

September 5 2018

Mathematical Morphology based EF mesh

Franck N'Guyen

Computer-aided design (CAD)

CATIA SolidWorks Etc

Image acquisition

Tomography X

Confocal microscopy

LIDAR laser

The microstructure

Tomographic 3D image

neuronal connection of a brain

MRI brain

Study of the thermo-mechanical behavior ?

A discretized world

What is the problem ?

Natural mesh

1 Pixel/Voxel = 1 FE mesh

Quick overview

Geometrical approach

Octree based mesh

Morphing image/Mesh

OOF 2D / OOF3D S.Langer

"Direct multiphase mesh generation from 3D images using anisotropic mesh adaptation and a redistancing equation" Jia-Xin Zhaoa and al

Marching cube

Cas 9

Cas 8

3

6

Cas 14

Presence of holes

Alternative to a systematic partition of a set of pixels / voxels

Microstructure morphology consideration whith Mathematical Morphologie concepts

Significantly reduces the number of elements and bypass the decimation step while respecting the morphology of the microstructure

Images to be processed

Binary 2D images

Enriched segmentation

Method : Particle swarm optimization (PSO)

original image

Segmentation in clusters of gray levels

 $\nabla_{B}(f) = \partial(f) = \delta_{B}(f) - \mathcal{E}_{B}(f)$

Morphological gradient functional case

Delaunay-refinement and Frontal-Delaunay triangulation techniques. D. Engwirda

Other result

No morphological compromise

Binary 3D images

Organigram

Surface of a binary 3D image

Internal Gradient : ensemblist case

26- connectivity

Point process

X

zÆ

 $P_X = X \setminus \gamma_{B(x,r)}(X) \cap g^{-}(X)$

 P_X

3D « *hit and run »* implantation process point (C.Lantuejoul)

Automatic morphological intensity point process control

Geodesic watershed

Geodesic Voronoï

$M_{X} = \partial^{-}(X) \setminus W(f)$

Graph-M

Hausdorff distance

$$d(\partial^{-}(X), \mathsf{T}(X)) = \max\left\{\sup_{x\in\partial^{-}(X)} d(x, \mathsf{T}(X)), \sup_{x\in T(X)} d(x, \partial^{-}(X))\right\}$$
$$d(\partial^{-}(X), \mathsf{T}(X)) = \inf\left\{\varepsilon, \partial^{-}(X) \subset \delta_{B(\varepsilon)}(\mathsf{T}(X)), T(X) \subset \delta_{B(\varepsilon)}(\partial^{-}(X))\right\}$$

Boolean scheme

Other results

Labelled 3D image

Phase property

Adjacency of contact surfaces between labels

Geodesic surface triangulation

3D Geodesic open surface Voronoi consideration

Ensemblist labelisation

Ensemblist geodesic M-Graph defined on an open surface

Iterativ construction

Geodesic surface triangulation : Vertices : $x_1, ..., x_m$ and Edges : $[x_i, y_L]$ where $i_j \in L$

Phase triangulation

Mesh

3D generalized M-Graph on a labelled image

1368776 nodes

Adaptative mesh

Other realisations

Non convex shape metallic material

Simulation of cold spray coating