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Rational for this Research (in Medical VR)

Simulation of X-Ray attenuation extensively studied in physics;

Different physically-based simulation code available;

Physically-based simulation usually performed using Monte
Carlo methods on CPU (often used in dosimetry for
radiotherapy);

Computing an image requires a very very very long time;

Ray-tracing techniques are an alternative, but still relatively
slow on CPU;

Need for an fast open-source graphics processing unit (GPU)
implementation.
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Fact sheet

Open-source (created on 01 Dec 2013)

SVN repository hosted by ;
svn checkout http://svn.code.sf.net/p/gvirtualxray/code/trunk/

Implemented in using ;

Can also be deployed in applications;

Provides real-time performance;

Is accurate (quantitative validation);

Reproducibility;

Supports XCOM: Photon Cross Sections Database from ;

Uses polygon meshes to model 3-D geometries

from popular file formats (eg. STL, PLY, 3DS, OBJ, DXF,
X3D, DAE)
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X-photons/matter Interactions

X-photons cross matter;

During their path into the body, they can interact with matter.
 X-ray source

X-ray detector

11

2 4

3

1 Directly transmitted photons
(no interaction);

2 Absorbed photons;

3 Scattered photons;

4 Absorbed scattered photons.

For most X-rays imaging modalities, only directly transmitted
photons are essential;

Scattered photons decrease the image quality;

Absorbed photons do not reach the detector.
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Beer-Lambert Law (Attenuation Law)

Nin(E ) the number of incident
photons at energy E ;

Nout(E ) the number of
transmitted photons of energy E ;

µi the linear attenuation
coefficient (in cm−1) of the i th

object. It depends on:

E the energy of incident
photons;
ρ the material density of the
object;
Z the atomic number of the
object material.

Lp(i) the path length of the ray
in the i th object.

X-ray source
Nin(E)

Nout(E)

µi

µi−1

µ1

µ2

µ3

Lp(1)

Lp(2)

Lp(3)

Lp(i− 1)

Lp(i)

Nout(E ) = Nin(E ) exp

(
−
∑

i

µi (E , ρ,Z )Lp(i)

)
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Path Length: Naive Approach

4
1 3 2

X-ray source

detector

1st, 2nd, 3rd, 4th intersections as
found by ray-tracing

Detect every intersection between a ray and the objects;

Sort intersection (Can be handled by GPUs using
depth-peeling, a multi-pass rendering technique for
semi-transparent polygonal objects without sorting polygons);

Compute path length.
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Path Length: L-Buffer

4
1 3 2

X-ray source

detector

1st, 2nd, 3rd, 4th intersections as
found by ray-tracing

V

N4
N1N3

N2

d4 d1
d3 d2

Intersection sorting is not needed!
By convention normals are outward;
A ray penetrates into an object when the dot product between
the view vector (V ) and the normal (Ni ) at the intersection
point is positive;
It leaves an object when the dot product is negative.
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L-Buffer Implementation

Lp =
∑

i

−sng (V · Ni )× di

i refers to i th intersection in an arbitrary order;

di distance from X-ray source to intersection point;

sgn (V · Ni ) stands for the sign of the dot product between V
and Ni ;
In a shader program, compute:

sgn (V · Ni );
di the distance between the X-ray source and the intersection;
Assign −sng (V · Ni )× di for the fragment value.

For each pixel, compute Lp thanks to high-dynamic range and
OpenGL blending function (pixel values may not be between 0
and 1).

F. P. Vidal, M. Garnier, N. Freud, et al., “Simulation of X-ray attenuation on

the GPU”, in Proceedings of Theory and Practice of Computer Graphics 2009,

Cardiff, UK: Eurographics Association, Jun. 2009, pp. 25–32
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Multipass Rendering Pipeline

pixel = E × Nout

= E × Nin(E ) exp

(
−
∑

i

µiLp(i)

)

Needs 3 FBOs with high-dynamic
range capability for off-line
rendering:

For each object of the scene:
1 Compute Lp(i);
2 Update results of

∑
µiLp(i).

For the final image only:
1 Compute Nout;
2 (Optional when direct display

only is needed).

Initilisation of OpenGL components
(FBOs, textures, shaders)

For each simulated X-ray image

For each object(i)

Clear(FBO (Lp(i)))

Compute(FBO (Lp(i)))

Update(FBO (
∑

µiLp(i)))
(make use of FBO (Lp(i)))

Compute(FBO (E ×Nin(E) ∗ exp (−∑
µiLp(i))))

(make use of FBO (
∑

µiLp(i))

Clear(FBO (
∑

µiLp(i)))
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Adding the Beam Spectrum

pixel =
∑

j

Ej × Nout(Ej)

=
∑

j

Ej × Nin(Ej) exp

(
−
∑

i

µi (Ej , ρ,Z )di

)
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Simulation with Different Source Shapes

Take into account the focal spot of the X-ray source

pixel =
∑

k

∑

j

Ej × Nin(Ej) exp

(
−
∑

i

µi (Ej , ρ,Z )di (k)

)

(a) Parallel beam. (b) Infinitely small point source. (c) 13mm source.

F. P. Vidal, M. Garnier, N. Freud, et al., “Accelerated deterministic simulation of x-ray

attenuation using graphics hardware”, in Eurographics 2010 - Poster, Norrköping,

Sweden: Eurographics Association, May 2010, Poster 5011
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Final Simulation Flowchart

For each energy channel (E)

Initilisation of OpenGL components
(FBOs, textures, shaders)

For each simulation loop

Clear FBO (Lp)

Compute Lp(i), i.e. FBO (Lp)

Update FBO (
∑

µ(E)Lp)
(make use of FBO (Lp))

Clear FBO (
∑

µ(E)Lp)

For each object (i)

Set OpenGL vertex transformations
(modelview & projection matrices)

Clear final framebuffer

Update frame buffer:∑
E (E ×Nin(E)× exp (−∑

i µ(i, E)Lp(i)))
(make use of FBO (

∑
µ(E)Lp))

Display or save frame buffer (final results)

For each energy channel (E)

For each energy channel (E)

For each point source
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Validation Method

Simulating an image relies on a Beer-Lambert law
implementation;

Solving the Beer-Lambert law relies on Linear Attenuation
Coefficients; (µ)

µ is not known for given incident energies;

µ is computed using Mass Attenuation Coefficients
(
µ
ρ

)
and

Density (ρ).

Are the values used in gVirtualXRay accurate? Compare values
computed in gVirtualXRay with those from the
literature.

Are the Beer-Lambert law implementations accurate? Compare
values computed in gVirtualXRay with theoretical
ones.

Are the simulated images accurate? Compare images computed
using gVirtualXRay with those using a
state-of-the-art Monte Carlo software from CERN.
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Density for Different Materials (human tissues)

Image from W. Schneider, T. Bortfeld, and W. Schlegel,
“Correlation between CT numbers and tissue parameters needed

for Monte Carlo simulations of clinical dose distributions”, Physics
in Medicine & Biology, vol. 45, no. 2, p. 459, 2000. doi:

10.1088/0031-9155/45/2/314

20 / 61

https://doi.org/10.1088/0031-9155/45/2/314


Density for Different Materials (human tissues)
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Mass Attenuation Coefficients

Any tissue can be described by its Hounsfiled Unit (HU):

HU = 1000× µ− µwater
µwater

Give a HU value to any simulated object;

If µwater is known for any energy, then µ for any HU and for
any energy can be computed:

µ(E ) = µwater (E )×
(

1 +
HU

1000

)

Mass attenuation coefficients
(
µ
ρ

)
for various human tissues

can be found in the literature;

The density (ρ) for various human tissues can be found in the
literature.
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Mass Attenuation Coefficients: Tissue, Soft (ICRU-44)

Image from https://physics.nist.gov/PhysRefData/

XrayMassCoef/ComTab/tissue.html
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Mass Attenuation Coefficients: Tissue, Soft (ICRU-44)
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µwater from literature is provided at given energies only: Interpola-
tion needed
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Mass Attenuation Coefficients: Bone, Cortical (ICRU-44)

Image from https://physics.nist.gov/PhysRefData/

XrayMassCoef/ComTab/bone.html
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Mass Attenuation Coefficients: Bone, Cortical (ICRU-44)

10−2

10−1

100

101

102

103

104

105

10−3 10−2 10−1 100 101 102

M
as

s
a
tt

en
u

at
io

n
co

effi
ci

en
t

(µ
/ρ

)
in

cm
2
/g

Energy in keV

Reference

µwater ×
(
1 + HU

1000

)
(µwater interpolation: linear scale)

µwater ×
(
1 + HU

1000

)
(µwater interpolation: log scale)

23 / 61



Mass Attenuation Coefficients: Bone, Cortical (ICRU-44)
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Beer-Lambert Law: Polychromatism Case

Cube: Edge length of 3 cm, made of
soft tissue (HU = 52).

Cylinder: Height of 3 cm, diameter of
2 cm, made of bone (HU =
1330).

Incident energy:
N : Number of E : Energy

photons (in MeV)

10 0.1
20 0.2
10 0.3
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Beer-Lambert Law: Polychromatism Case

Use material properties from the literature;

The energy, Iout , (in MeV) transmitted orthogonally throw the
middle of cube and cylinder should be:

Iout = Iout(0.1) + Iout(0.2) + Iout(0.3)

Iout(0.1) = 10× 0.1× exp (− (3.346E−01× 2 + 1.799E−01× 1))

Iout(0.2) = 10× 0.1× exp (− (2.361E−01× 2 + 1.443E−01× 1))

Iout(0.3) = 10× 0.1× exp (− (2.008E−01× 2 + 1.249E−01× 1))

Iout = 4.359

On GPU, the energy, I ′out , is: 4.353.

The relative error is:

|I ′out − Iout |
Iout

= 0.1%
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Gate vs. gVirtualXRay

We simulate a test case twice:

Using a Monte Carlo method for particle physics implemented
in GATE 1;

Using our GPU implementation.

1 GATE is an opensource software developed by an international collaboration.

Its focus is on Monte Carlo simulation in medical imaging and radiotherapy.

GATE makes use of the Geant4 libraries. Geant 4 is CERN’s Monte Carlo

simulation platform dedicated to particle physics in nuclear research. CERN is

the European Organization for Nuclear Research.
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Gate vs. gVirtualXRay: Point Source
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Gate vs. gVirtualXRay: Point Source

GATE gVirtualXRay

(13.8 days of computations) (less than 1 sec. of computation)

Normalised cross-correlation (NCC) = 99.747%
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Gate vs. gVirtualXRay: Uncentered Source

The source has been translated by a vector: -5.0 0.5 0.5 cm.
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Gate vs. gVirtualXRay: Uncentered Source

GATE gVirtualXRay

(12.9 days of computations) (less than 1 sec. of computation)

Normalised cross-correlation (NCC) = 99.656%
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Gate vs. gVirtualXRay: Cube Source
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Gate vs. gVirtualXRay: Cube Source

GATE gVirtualXRay

(14.4 days of computations) (less than 1 sec. of computation)

Normalised cross-correlation (NCC) = 99.743%
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Projectional Radiography

Projectional Radiography is a medical imaging diagnostic tool :

Anatomical variations: Requires a specific patient pose;

Settings: X-ray machines need a specific set up in each case.
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Teaching projectional radiography

Users can train without use real patient and suffer X-Ray radiation

https://www.youtube.com/watch?v=sXB-9fG2AbU
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Simulation of a Sinogram and Tomography Reconstruction

https://www.youtube.com/watch?v=852C4VdWrfc 35 / 61
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Simulation of respiration motion

Aim: simulating the respiration motion and corresponding
X-ray images;
Method: reproducing the real action of the muscles
(diaphragm and intercostal muscles);
Each organ is geometrically defined by a triangular mesh
extracted from a segmentation of patient CT scans;
Soft-tissues are deformed in real-time using 3-D Chainmail.

Liver

Diaphragm
Ribs

Lungs
Spine

system

Gallbladder
and bile duct

Kidney and

Deformable organ
Rigid organ with translation
Rigid organ with rotation
Static organ

Deformable organ with internal

urine collecting

contraction

F. P. Vidal, P. Villard, and É. Lutton, “Tuning of patient specific deformable models using an adaptive evolutionary

optimization strategy”, IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp. 2942–2949, Oct. 2012.

doi: 10.1109/TBME.2012.2213251
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Fluoroscopy simulation

https://www.youtube.com/watch?v=fC1b1rGbtag
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Motion artifacts

(a) Sinogram without respiration. (b) Sinogram with respiration.

(c) CT reconstruction of (a).

Ghost artefacts

(d) CT reconstruction of (b).
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Example of Python Application (1/3)

#! / u s r / b i n / env python3
i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t as p l t
i m p o r t gvxrPython as g v x r

# C r e a t e an OpenGL c o n t e x t
g v x r . createWindow ( ) ;
g v x r . setWindowSize (6 00 , 600) ;

# Set up th e beam
g v x r . s e t S o u r c e P o s i t i o n ( −20.0 , 0 . 0 , 0 . 0 , ”cm” ) ;
g v x r . u s e P o i n t S o u r c e ( ) ;

#g v x r . u s e P a r a l l e l B e a m ( ) ;
g v x r . setMonoChromatic ( 8 0 , ”keV” , 1) ;

# Set up th e d e t e c t o r
g v x r . s e t D e t e c t o r P o s i t i o n ( 1 0 . 0 , 0 . 0 , 0 . 0 , ”cm” ) ;
g v x r . s e t D e t e c t o r U p V e c t o r ( 0 , 0 , −1) ;
g v x r . s e t D e t e c t o r N u m b e r O f P i x e l s (6 40 , 640) ;
g v x r . s e t D e t e c t o r P i x e l S i z e ( 0 . 5 , 0 . 5 , ”mm” ) ;
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Example of Python Application (2/3)

# Load t h e data
g v x r . loadSceneGraph ( ” welsh−dragon−s m a l l . dae ” , ”mm” ) ;

# Set t h e m a t e r i a l p r o p e r t i e s
f o r mesh i n g v x r . getMeshLabe lSet ( ) :

g v x r . s e t A t t e n u a t i o n C o e f f i c i e n t ( mesh , 0 . 5 ) ;

# Move e v e r y t h i n g to t h e c e n t r e
g v x r . moveToCentre ( ) ;

# Use GPU a r t e f a c t f i l t e r i n g
g v x r . e n a b l e A r t e f a c t F i l t e r i n g O n G P U ( ) ;

# Compute an X−r a y image and
# r e t r i e v e t he image i n Numpy ’ s 2D a r r a y format
np image = g v x r . computeXRayImage ( ) ;

# Run an i n t e r a c t i v e l o o p
g v x r . r e n d e r L o o p ( ) ;
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Example of Python Application (3/3)

# Save th e image
np . s a v e t x t ( ”x−r a y i m a g e . t x t ” , np image ) ;

# P l o t t h e X−r a y image u s i n g M a t p l o t l i b
i m g p l o t = p l t . imshow ( np . l o g ( np image . T) , cmap=” g r a y ” ) ;
p l t . show ( ) ;
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3D µ-tomography of tungsten fibre

using synchrotron radiation at the European Synchrotron Radiation
Facility (ESRF) in Grenoble, France

View from Mount Jalla on the ESRF and ILL in Grenoble.

Source: Photograph by German Wikipedian Christian Hendrich, October 2004.
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3D µ-tomography of tungsten fibre

using synchrotron radiation at the ESRF in Grenoble, France
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Studying artefacts in µ-tomography

Some volumes reconstructed using tomography by synchrotron
radiation, obtained at ESRF, did not contain artefacts, others did.

Image courtesy of Dr. Éric Maire and Prof. Jean-Yves Buffière
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With artefacts

Almost the same material: Replacing the carbon cores with
tungsten cores.

Data courtesy of Dr. Éric Maire and Prof. Jean-Yves Buffière

Silicon carbide (SiC)

(Ti90/Al6/V4)

Tungsten (W)

Titanium/Aluminium/Vanadium

Reconstructed tomographic slice.
1.9 µm pixel size.

Synchrotron radiation, 33 keV in energy.

Purpose: determining the cause of artefacts and removing them.
46 / 61



Image registration: Cube (1/2)

Take a real µ-CT slice (f ).

Use its sinogram (Y = P[f ]).

Optimise the position (x , y), orientation (α), and size (u, v)
of a parallelepiped using either:

Ŷ = arg min
x,y ,α,u,v

∥∥∥Y − Ŷ (x , y , α, u, v)
∥∥∥

2

2
, or

f̂ = arg min
x,y ,α,u,v

∥∥∥f − P−1
[
Ŷ (x , y , α, u, v)

]∥∥∥
2

2

We use our own simple evolutionary algorithm (EA) written in
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Image registration: Cube (2/2)
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Image registration: Cylinders (1/3)

Use x , y , α, u, v from previous step.

Minimise the same functions using Fly algorithm (a
cooperative coevolution algorithm).

Optimise the position of N points representing the centres of
cylinders.

In selection, the fitness of individual i is based on the
leave-one-out cross-validation using either:

Fm(i) =
∥∥∥Y −

(
Ŷ \ {i}

)∥∥∥
2

2
−
∥∥∥Y − Ŷ

∥∥∥
2

2
or

Fm(i) =
∥∥∥f − P−1

[
Ŷ \ {i}

]∥∥∥
2

2
−
∥∥∥f − P−1

[
Ŷ
]∥∥∥

2

2
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Image registration: Cylinders (2/3)

50 / 61



Recursively extract points with Fm(i) > 0

Reference Estimated Squared error

(Y = P [f ])
(
Ŷ
) (∥∥∥Y − Ŷ

∥∥∥
2

2

)

(f )
(
f̂ = P−1

[
Ŷ
]) (∥∥∥f − f̂

∥∥∥
2

2

)
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Response of the detector (1/2)

Getting the Edge Spread Function (ESF), experiments performed
at ESRF.

4 acquisitions,

50 projections of an edge in a gallium arsenide crystal,

Translation of the edge, by a constant vector, between each
projection.
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Response of the detector (2/2)

Edge

Detector

Move

1st horizontal acquisition

Edge

Detector

Move

1st vertical acquisition

Detector

Edge

Move

2nd horizontal acquisition

Move

Edge

Detector

2nd vertical acquisition
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Extracting a profile for an acquisition

Considering a particular pixel, p(x , y), and extracting its intensity
for each projection.

Profil horizontal B pour le pixel d’abscisse 502

Profile

0 5 10 15 20 25 30 35 40 45
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Profil horizontal B

0 5 10 15 20 25 30 35 40 45
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Pixel 501

Pixel 502

Pixel 503
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ESF estimation: Reconstructing a complete profile

Profil Horizontal B (expérimental)
Profil Vertical A (expérimental)

Profil Vertical A (approximation)
Profil Horizontal B (approximation)

Profil horizontal B et profil vertical A

100 200 300 400 500 600 700 800 900
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0 20 40
0

0.1

0.15

0.2

0.25

0.05

Edge Spread Function (ESF)

ESF (profil vertical A)
ESF (profil horizontal B)

−40 −20

Approximation of the profiles:

profile(x) = a + b × (arctan((x − c)/d) + erf((x − c)/e))

Approximation of the ESF:

esf(x) = profile(scaling×(x−0.5)+c)−profile(scaling×(x+0.5)+c)
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Simulation: Tomography acquisition + ESF

Simulation of tomographic slices using gVirtualXRay with
monochromatic radiation;

All projections of the sinogram are convolved by the ESF.

Real µ-CT slice
Simulation without

convolution

Simulation with

convolution

Conclusion: Artefacts due to the camera response, obtained by
simulation, are similar to artefacts observed on
experimental data.
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Harmonic components (1/2)

Determining the effect of harmonics using tomographic scans
simulated using gVirtualXRay.

a priori data, in the worst case:

fundamental component, 33 keV, 97% of the incident beam,

1st harmonic component, 66 keV, 2% of incident the beam,

2nd harmonic component, 99 keV, 1% of incident the beam.
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Harmonic components (2/2)

Real µ-CT slice Simulation with

polychromatic beam

and without convolution

Simulation with

polychromatic beam

and with convolution

Conclusion: artefacts due to harmonics, obtained by simulation,
are similar to artefacts observed on experimental
data.
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Conclusions

C++ X-Ray simulation
library:

Open source;
Realtime;
Portable;
Validated.

Incident beam:
Shape:

Point source;
Cube source;
Parallel beam.

Monochromatic;
Polychromatic.

Fast and accurate:

Can be used in an
optimisation framework;
. . .

Various applications:

Teaching radiography;
Virtual Reality
Simulation;
Virtual Testing Lab;
. . .
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Future Work

Material properties

Add full support to Element/Compound/Mixture Selection
exhaustive validation

Software engineering

Unit testing;
Consistent coding standard.

Increase awareness amongst potential users:

in various fields of science.

Volumetric mesh

Tetrahedron.

User requests?

New language plugins? C, Ruby, R, Matlab, Octave?

New applications/Collaborations:

. . .
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