

**GEODICT, THE DIGITAL MATERIAL LABORATORY** 

**IBFEM-4i** Swansea, September 12<sup>th</sup>, 2019

Andreas Wiegmann

# **GEODICT<sup>®</sup> MODULE OVERVIEW**





# **GEODICT<sup>®</sup> SOLUTIONS FOR ...**



| Filtration              | For a clean<br>environment      |  |
|-------------------------|---------------------------------|--|
| Electrochemistry        | For electromobility             |  |
| Structural<br>materials | For lightweight applications    |  |
| Digital Rock<br>Physics | For efficient energy production |  |

#### **DISTRIBUTORS WORLDWIDE**





# SELECTED CLIENTS OF A TOTAL OF ~150 CLIENTS





#### **TYPICAL ARTIFACTS**

# GEODICT

- Image Alignment
- Brightness
  - changes in cutting direction and in single images
  - Curtaining-effect / streaking, sensor dependent
  - Local charging leads to local change in brightness
- Non-invaded pores after resin infiltration



#### **FIB-SEM** IMAGE ALIGNMENT

# GEODICT

Image Stack Alignement - Aligned by Region



Unaligned image stack, image #1



© Math2Market GmbH

Aligned image stack, image #1

#### NANO-CT GRAY-VALUE CORRECTION

# GEODICT

- Images can have changes in brightness
- Can be adjusted for each direction, x-, y-, and z-
- Can be beneficial in other use cases as well
  - Here: brightness correction of a nanoCT scan



#### **CURTAIN FILTER**

# GEODICT

MATH

2 MARKET



Original SEM

SEM after applying the curtain filter

# INTRODUCTION

#### GEODICT



Applied Filters:

- Non-Local Means Filter
- Sharpen Filter



 Removed grains at the domain boundary
 - 11 -- © Math2Market GmbH



| STATISTICAL TWIN USING GRAINGEO                                                     | GEODICT                     |
|-------------------------------------------------------------------------------------|-----------------------------|
| IMPORT GRAINFIND RESULTS                                                            |                             |
| INTO GRAINGEO                                                                       |                             |
| GrainGeo Create Options                                                             | ×                           |
| GEODICT                                                                             |                             |
| Result File Name (*.gdr) GrainGeoCreate.gdr                                         | n 🕶 🔂 🚱                     |
| Create Options Object Options Object Overlap Result Options                         |                             |
| Create in Current Domain Keep Current Objects / Structure Domain                    |                             |
| NX 200 \$ (200 μm) Origin X / (μm) 0 Periodic X                                     |                             |
| NY 200 \$ (200 μm) Origin Y / (μm) 0 Periodic Y                                     |                             |
| NZ 200 🗘 (200 μm) Origin Z / (μm) 0 Periodic Z                                      |                             |
| Voxel Length / (µm) 1 Pore / Matrix Material (ID 00) 🍐 Air (Fluid) Center Domain    |                             |
| Generation and Overlap Mode Stopping Criterion                                      |                             |
| Allow Object Overlap     Fixed Object Number                                        |                             |
| Without (Remove) Object Overlap     Edit       Object Solid Volume Percentage / (%) |                             |
| Prohibit Object Overlap     Grammage / (g/m <sup>2</sup> )                          |                             |
| Use Isolation Distance     -     Object Weight Percentage / (%)                     |                             |
| O Enforce Object Overlap     Maximal Run Time / (h)     6                           |                             |
| Random Seed 45                                                                      |                             |
|                                                                                     |                             |
| 🖬 📂 🖄 🔊 ОК Са                                                                       | ncel                        |
|                                                                                     |                             |
| 12                                                                                  | © Math2Market GmbH 2 MARKET |

# STATISTICAL TWIN USING GRAINGEO

# GEODICT



- Used GrainGeo's "Create Grains"
- Visual comparison is good

#### STATISTICAL TWIN USING GRAINGEO

# GEODICT

#### **COMPARISON OF STATISTICS** Do Aug 22 2019 (2020 Build 35755) Do Aug 22 2019 (2020 Build 35755) Domain: 1400 x 1400 x 200 Voxel: Load Structure Domain: 1400 x 1400 x 200 Voxel: Load Structure Results Results Input Map Log Map Post Map Input Map Log Map Post Map Report Plots Plots Map Report Map **Digital Twin** µCT-scan GrainFind GrainFind Main Results Main Results Number of grains: 21104. - Number of grains: 23511. Number of grain contacts: 46555. Number of grain contacts: 30297. The index image Grains.g32 contains the The index image Grains.g32 contains the identified grains with their grain tags. These tags identified grains with their grain tags. These tags are integers ranging from 1 to 21104 togers ranging from 1 to 22511 Relative agreement of number of grains: 90% Statistics Grain Vo Relative agreement of number of grain contacts: Step lume 154% ae 51.9209 % Initial Grain Structure 52.5015 % Initial Grain Structure Watershed with Minimal 52,5005 % Watershed with Minimal 51.9184 % Diameter Diameter v Grain Reconnection 52,5005 % Grain Reconnection 51,9184 %

- Used GrainGeo's "Create Grains"
- Visual comparison is good
- However, statistics do not match perfectly



#### STATISTICAL TWIN USING GRAINGEO GRAINGEO: ADD BINDER!

#### GEODICT



Slice from



#### Comparison CT-scan vs. Digital Twin VISUAL COMPARISON



MAIH



- Used GrainGeo's "Create Grains" and GrainGeo's "Add Binder"
- Visual comparison is good



#### COMPARISON CT-SCAN VS. DIGITAL TWIN COMPARISON PLOTS





#### COMPARISON CT-SCAN VS. DIGITAL TWIN

# GEODICT

#### VISUAL COMPARISON



- Used GrainGeo's "Create Grains" and GrainGeo's "Add Binder"
- Visual comparison is good
- Statistics match nicely



# **DIGITAL BATTERY DEVELOPMENT**

Solutions with **GeoDict**<sup>®</sup>

**Dr. Ilona Glatt**, Dr. Mathias Fingerle, Dr. Fabian Biebl, Sebastian Rief, Franziska Arnold, Steffen Schwichow, Dr. Barbara Planas



#### **LI-ION BATTERY**

# GEODICT



#### MICROSTRUCTURE OF A LI-ION – CATHODE



SCAN AND SEGMENTATION: BY COURTESY OF J. JOOS, KIT







# PARTICLE EXPANSION DUE TO LI-INTERCALATION





#### INFLUENCE OF ANODE GRAIN SIZE: BATTERYDICT HALF-CELL SIMULATION

# GEODICT

![](_page_22_Figure_2.jpeg)

- Charging of an anode with different grain sizes
- Identical porosity, amount of connected active material and electrolyte
- At 2.5 C, charging gets harder with larger particles

![](_page_22_Figure_6.jpeg)

![](_page_22_Picture_7.jpeg)

![](_page_23_Figure_0.jpeg)

#### Analysis of µCT scans of nonwoven samples

Andreas Grießer, Rolf Westerteiger, Steffen Schwichow, Andreas Wiegmann, Math2Market Wesley DeBoever, Bruker µCT

![](_page_23_Picture_3.jpeg)

#### DIGITAL TWINS PROVIDE GROUND TRUTH GEODICT

![](_page_24_Picture_1.jpeg)

Training Data: Use GeoDict's unique fiber modelling capabilities:

- Modeled 10 Digital siblings (512x512x256 Voxels) as training data
- Varied fiber curvature, orientation, length and diameter
- Corresponded to ~1 billion solid voxels as training data points

#### DIGITAL TWINS LOOKING LIKE SCANS

#### GEODICT

![](_page_25_Picture_2.jpeg)

Training Data: Then make the models look like binarized scans!

 All fibers in the models get the same gray value, just as in the segmented 3D scans

#### **TRAINING PHASE OF NN**

# GEODICT

![](_page_26_Picture_2.jpeg)

Dozens of Binarized GeoDict models Neural Network learns weights for edges Dozens of Original GeoDict models

![](_page_26_Picture_7.jpeg)

#### USAGE PHASE OF NN

# GEODICT

![](_page_27_Picture_2.jpeg)

# FIBER IDENTIFICATION BY NN: SUMMARY GEODICT

![](_page_28_Picture_1.jpeg)

Training: NN learns edge weights from input and output

- input: GeoDict Model: binarized version
- output: GeoDict Model: labeled fibers

Usage: NN predicts labeled output from input using weights

- input: Synchrotron / μCT data: binarized version
- output: Synchrotron / µCT data: labeled fibers

-- 29 --

![](_page_28_Picture_10.jpeg)

#### **OVERVIEW OF SAMPLE STRUCTURES**

# GEODICT

| Sample<br>Name | Resolution | Physical dimensions  | Voxel dimensions       |
|----------------|------------|----------------------|------------------------|
| А              | 2.4µm      | 43.9 x 11.6 x 4.1 mm | 18,310 x 4,816 x 1,704 |
| В              | 2.7µm      | 42.2 x 10.9 x 4.8 mm | 15,619 x 4,032 x 1,796 |

- Carded nonwoven samples
- Scanned and stitched together by Bruker microCT
- Analyzed by Math2Market using GeoDict

![](_page_29_Picture_6.jpeg)

#### SAMPLE A – SEM VIEW

# GEODICT

![](_page_30_Picture_2.jpeg)

#### SAMPLE B – SEM VIEW

# **GEO**DICT

![](_page_31_Picture_2.jpeg)

# GEODICT

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_2.jpeg)

#### FIBER ORIENTATIONS – SAMPLE A

#### GEODICT

![](_page_33_Picture_2.jpeg)

#### FIBER ORIENTATIONS – SAMPLE B

### GEODICT

![](_page_34_Figure_2.jpeg)

# FIBER IDENTIFICATION ON SAMPLE B

# GEODICT

| Sample B                                                                                     | Labeling of fibers                                                                                                                                                                                 | Data becomes information                                                                                                               |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| FiberFind was used on the<br>complete sample.<br>Process is explained on a<br>smaller cutout | The artificial intelligence separates the solid<br>voxels in the image data into individual fibers.<br>Each fiber becomes an independent, modifiable<br>object which can be treated independently. | Geometric information, such as fiber length,<br>fiber segment orientation and fiber diameter,<br>can be read directly from the object. |
|                                                                                              |                                                                                                                                                                                                    |                                                                                                                                        |

MATH




## DIGITAL PEM FUEL CELL DEVELOPMENT

Solutions with **GeoDict**<sup>®</sup>

**Dr. Mathias Fingerle**, Dr. Ilona Glatt, Dr. Jürgen Becker, Sebastian Rief, Andreas Grießer, Steffen Schwichow, Franziska Arnold



## PEM FUEL CELL

## GEODICT



2 MARKE





SEGMENTATION WITH IMPORTGEO-VOL



DATA: µCT SCANS OF TORAY TGP H 060, PSI VILLINGEN (CH)

## SEGMENTATION OF A GDL WITH FIBERFIND-AI\* GEODICT



The neural network in FiberFind-AI, can distinguished fiber and binder of a Toray Paper

## CT-SCAN VS DIGITAL TWIN GENERATED IN GEODICT®

#### 1. 2. **3. Model**



## GEODICT



4. DESIGN

## **Digital Twin**



2 MARKET



## SIMULATION OF ELECTRICAL CONDUCTIVITY\*

## GEODICT

Conductivity in experiments did not fit conductivity in simulations.<sup>[1]</sup>

- Reason: fibers and binder could not be differentiated.<sup>[1]</sup>
- Solution: After identifying fiber and binder with FiberFind-AI, we can now run simulations where binder and fibers have different conductivity



[1] J. Becker et. al.: Determination of Material Properties of Gas Diffusion Layers: Experiments and Simulations Using Phase Contrast Tomographic Microscopy, Journal of The Electrochemical Society, 2009.



## TRANSPORT PROPERTIES AT DIFFERENT COMPRESSION LEVELS

## GEODICT



J. Becker et. al.: Determination of Material Properties of Gas Diffusion Layers: Experiments and Simulations Using Phase Contrast Tomographic Microscopy, Journal of The Electrochemical Society, 2009.



## WATER SATURATION OF A GDL SIMULATED WITH SATUDICT

2. ANALYZE



MATH

2 MARKET

**GEO**DICT

## MECHANICAL PROPERTIES: COMPRESSION OF GDL DETERMINED WITH ELASTODICT



- Transverse isotropic elastic modulus for fibers
- Isotropic elastic modulus for binder
- 30% compression





2 MARKE

# OPTIMIZE WATER MANAGEMENT WITH GEODICT®\*

## GEODICT



Motivated by Jens Eller, Paul Scherrer Institut







## COMPRESSION OF POROUS MEDIA WITH GEODICT

µCT scans and alignment by Stefan Probst-Schendzielorz, Voith Paper, Heidenheim





## **COMPRESSION OF GENERATED FOAMS**

## GEODICT



Theoretical stress strain curve



- I. Linear elasticity,
- II. Plateau

-- 48 --

- III. Densification
- Foam generated with FoamGeo
- 80 % compression (on deformed geometry)

- Buckling of cell walls can be observed
- Characteristical stress strain curve
- Constant positive pore pressure



## **COMPRESSION OF A SINGLE BEAD**

## GEODICT

#### Polypropylene particle foam

#### Compression of a single bead



MATH

2 MARKET

## FOAM AND STRESSES UNDER ELONGATION

## GEODICT



## COMPRESSION SIMULATION OF A DRAINAGE FELT COMPRESSION @ 0.1 MPa

## GEODICT



#### Scan

**547 x 546 x 410** Voxel **0%** Deformation





#### ElastoDict

**547 x 546 x 410** Voxel **0%** Deformation



## Compression Simulation of a Drainage Felt Compression @ 1.0 MPa

## GEODICT



# tonna

#### Scan

547 x 546 x 358 Voxel -12.68% Deformation



#### ElastoDict

547 x 546 x 358 Voxel -12.68% Deformation





## COMPRESSION SIMULATION OF A DRAINAGE FELT COMPRESSION @ 2.0 MPa

## GEODICT





#### Scan

547 x 546 x 341 Voxel -4.75% Deformation



#### ElastoDict

547 x 546 x 341 Voxel -4.75% Deformation





## COMPRESSION SIMULATION OF A DRAINAGE FELT COMPRESSION @ 4.0 MPa

## GEODICT



© Math2Market GmbH

#### Scan

547 x 544 x 314 Voxel -7.92% Deformation



#### ElastoDict

547 x 544 x 314 Voxel -7.92% Deformation



## COMPRESSION SIMULATION OF A DRAINAGE FELT COMPRESSION @ 6.0 MPa

## GEODICT



#### Scan

547 x 544 x 290 Voxel -7.46% Deformation





#### ElastoDict

547 x 544 x 290 Voxel -7.46% Deformation

-- 55 --



## COMPRESSION SIMULATION OF A DRAINAGE FELT GEODICT OVERLAP-ANALYSIS @ 1.0 MPa







Janna Krummenacker (IVW), Franz Schreiber (ITWM), Dr. Constantin Bauer (M2M), Andreas Grießer (M2M), Andreas Wiegmann PhD (M2M).



## CONTRIBUTIONS

This work requires 3D printing, 3D imaging, mechanical testing, CAD, simulation of the printing process and simulation of the mechanical properties.

- 3D printing by Math2Market GmbH, Kaiserslautern, Germany, using a commercial Ultimaker 3 printer
- Mechanical Testing by Institute for Composite Materials, IVW, Kaiserslautern
- 3D µCT imaging by Fraunhofer Institute for Industrial Mathematics, ITWM, Kaiserslautern
- CAD design of the meta material, simulation of the printing process and simulation of the mechanical properties by Math2Market GmbH, using GeoDict and Fraunhofer ITWM's FeelMath

## GEODICT







MATH 2 MARKET



# WHAT IS SPECIAL ABOUT THIS MECHANICAL METAMATERIAL?



In the **horizontal direction**, the material is rather stiff.

In the **other direction**, this material is initially very soft before turning into a very stiff material.



# FUSED FILAMENT FABRICATION SIMULATION ON DIGITAL MODEL



Meta-Material designed for Additive Manufacturing



## **3D PART BY FUSED FILAMENT FABRICATION GEODICT**

Prototype manufactured by Additive Manufacturing



## PROBLEM: STANDARD APPROACH TO STIFFNESS GEODICT PREDICTION IS INSUFFICIENT



Simulated behavior does not agree with experiments



## SIMULATION DOES NOT MATCH EXPERIMENT PRINTING PROCESS IS NOT MODELLED





## SIMULATION DOESN'T MATCH EXPERIMENT BECAUSE PRINTING PROCESS IS NOT MODELLED

## GEODICT

## Questions

- Where does the discrepancy between the curves come from?
- Is it due to not modelling the printing process?
- Is it due to errors in the mechanics solver?
- Or even both?



#### VALIDATION OF THE MECHANICS SOLVER

## GEODICT

## 1. µCT-SCAN AND IMPORT IN GEODICT





VALIDATION OF THE MECHANICS SOLVER

## GEODICT

## 2. COMPARISON OF UNREALISTIC MODELED AND µCT SCANNED PART



unrealistic modeled part

overlap

 $\mu CT$  scanned part

© Math2Market GmbH

#### **Geometrical Validation**

VALIDATION OF THE MECHANICS SOLVER

## **3. COMPARISON OF CORNER DETAIL**





#### **Geometrical Validation**

2 MARKET



#### VALIDATION OF THE MECHANICS SOLVER 4. COMPARISON OF EXPERIMENT WITH SIMULATION

## GEODICT







Digital Image Correlation, Compression experiment

#### ElastoDict simulation on µCT-scan

MATH

2 MARKET



# MECHANICS SIMULATION AGREES WITH EXPERIMENT WHEN APPLIED TO $\mu$ CT SCAN



ΜΑΤΗ

2 MARKET

**GEO**DICT

#### 



#### AND HERE, MAGIC HAPPENS... INTRODUCING IMPORTGEO-AM

## GEODICT

Take output of printer software and create 3D model that takes into account the printing process



#### **Geometrical Validation**

## SOLUTION: GEODICT ENHANCED APPROACH TO STRESS- GEODICT STRAIN PREDICTION MATCHES EXPERIMENT



Simulation of the printing process is necessary for correct prediction of the stress-strain curve.


#### SIMULATING THE PRINTING PROCESS LEADS TO AGREEMENT OF SIMULATED AND EXPERIMENTAL CURVES





#### MODELLING THE PRINTING PROCESS LEADS TO AGREEMENT OF STRESS-STRAIN CURVES









Image source: https://www.thermofisher.com/blog/metals/new-reduced-platinum-catalyst-for-catalytic-converters/

Andreas Wiegmann, Anja Streit, Andreas Weber, Liping Cheng, Mehdi Azimian, Erik Glatt & Jürgen Becker



#### MODELING AFTERTREATMENT USING RESIDENCE TIMES

#### GEODICT

Reactive flow simulation with AddiDict residence time tracking

For example in a car exhaust catalyst / DPF: Reduction of Nox, HC and CO Removal of soot



# FLOW THROUGH PARTICULATE FILTER (PLUGGED)



- Flow simulation through channels and walls (porous catalyst).
- Walls are modelled as porous material. Effective properties are computed from simulation on fully resolved scale.



# MOLECULE MOTION IN PARTICULATE FILTER GEODICT (PLUGGED)

- Simulate molecule motion in flow field and due to diffusion.
- Bounces of the molecules at the interface between channel and the porous walls are available in GeoDict 2020.





#### SOOT DEPOSITION IN A HONEYCOMB

#### GEODICT



### MOLECULE MOTION IN CATALYST (NO PLUGS) GEODICT

Flow simulation through channels, porous walls (dark gray) and reaction layer (blue). Used periodic boundary conditions to simulate much larger channel geometry. Use new feature of placing particles in specifiable locations (light gray area in the inlet)



#### **RESIDENCE TIMES IN CATALYST**

### GEODICT

- Track the residence times in channel, walls and reaction layer in GeoDict.
- Export the residence times for all molecules for postprocessing , for example for deriving reaction rates.



#### Total simulation time: 1s

Particles spend between 40% and 70% of the time in the wall. An around 7% of the time in the reaction layer.

#### TWO SOURCES OF PRESSURE LOSS IN DPF



- 1. Across the ceramic micro structure
- 2. Along the channels due to capillary forces

- We simulate them separately.
- In both cases, we simulate the loading of an initially clean filter.



#### **BINARIZED PMS IMAGES**

FROM POLISHED MICROGRAPH SECTIONS AND MODELED SINTERED CERAMICS





#### **MEASURED POROSITIES & PERMEABILITIES**

OF REAL CERAMICS VS MODELED POROSITIES & SIMULATED PERMEABILITIES ON MODELED CERAMICS





#### **SPATIAL PARTICLES DEPOSITION OVER TIME**







#### **REDUCED PRESSURE DROP OVER TIME**



IKTS

After fast initial pressure drop increase(slope s1, depth filtration phase)follows long slower pressure drop increase(slope s2, cake filtration phase)

- Matched experiment with simulations
- Shortened depth phase to lower pressure drop during cake phase
- Fraunhofer IKTS manufactured ceramic, experiment matched simulations, and patent was granted: Particulate filter, No. DE102012220181 A1





Fraunhofer

#### FINDING A NEW GPF MATERIAL WITH GEODICT GEODICT

At World Congress Experience 2018, **Toyota Motor Company** presented "Development of Low Pressure and High Performance GPF Catalyst". <u>https://www.sae.org/publications/technical-papers/content/2018-01-1261/</u>

GeoDict software helps to reduce back pressure in Gasoline Particulate Filters by 25%.

microstructure of wash coats analyzed, understood and improved with GeoDict



## RENDERING OF MATERIALS AND SIMULATION RESULTS









Source: MANN+HUMMEL

### GEODICT CAN ALSO BE USED TO EXPORT MODELS FOR 3-D PRINTING







Source: MANN+HUMMEL on LinkedIn



#### Optimization of a virtual filter media prototype Pushing the limits 2.0 – next generation









Kaiserslautern, September 27th, 2017 Simulation-driven development and optimization of virtual filter media prototypes MANN+ HUMMEL



12

Source: MANN+HUMMEL

#### **"LARGE" SIMULATION**



#### **Simulation settings:**

Domain: 512x512x768 voxel Average velocity: 0.1 m/s pH value: 3.2 Simulation time: 20 s Number of particles: ~10.000 Runtime: 14 hs (16 cores, <20 GB Memory)



#### CONCLUSION



- For fuel cells, batteries and aftertreatment catalysts, the material's microstructure has a great influence on the performance
- The microstructure can be accessed by µCT, FIB-SEM & 3D image processing software
- The microstructure can be modelled by structure generators
- Material characterization can be done on images just as by experiments
  - Transport, Diffusion, Conduction
  - Stiffness, Deformation
- The development of next generation materials can be accelerated by screening designs digitally, first.
- You can do all this yourself with our easy-to-use, highly efficient and well-documented software

## NEXT GENERATION MATERIALS WITH GEODICT®

### GEODICT

The materials of the future are within reach and **we help you find them faster**.

