The Random Finite Element Method

Lee Margetts, University of Manchester

College of Engineering Coleg Peirianneg

IBFEM-4i 2019 Swansea, UK

Learning Objectives

After this lecture, you will be able to:

Sources of Uncertainty

- Variability in input parameters
 - Inherent scatter in data
 - Lack of or insufficient input information
 - Modelling assumptions
 - Human error
- Includes
 - Loads
 - Material properties
 - Restraints
 - Geometry

- Could be a combination of all of these!

Irreducible Uncertainties

Beyond our ability to completely control

Material Properties

- Young's modulus different for samples of same part
- Due to variability in the internal composition

Loads

- Randomness of environmental factors
- Wave height, wind velocity/direction

Construction/manufacturing

- Site/factory conditions
- Quality of workmanship

Reducible Uncertainties

Within our ability to control

But, for some practical reason, such as time and cost, cannot be completely eliminated.

Manufacturing

- When manufacturing a part containing a hole
- The diameter of the hole will vary from part to part
- This happens as the drill bit wears
- So there's uncertainty in geometry when modelling

Incorporating Uncertainty into Simulation

- If it is assumed that no variations occur in a parameter, we refer to the parameter as deterministic or single-valued.
 - Most finite element simulations assume all parameters are deterministic
 - We may carry out sensitivity analysis at the limits
- To incorporate uncertainties into a simulation, we need?

- If it is assumed that no variations occur in a parameter, we refer to the parameter as deterministic or single-valued.
 - Most finite element simulations assume all parameters are deterministic
 - We may carry out sensitivity analysis at the limits
- To incorporate uncertainties into a simulation, we need some type of uncertainty model.
- The most common approach is to use random variables
 - Relates the possible values to the probability of occurrence.

Characterising Variability

MANCHESTER

The University of Manchester

- How do we input uncertainties into a finite element model?
- Monte Carlo Simulation (MCS)
 - Take a random sample from the input distribution.
 - This sample produces one output sample of response.
 - The process is repeated a large number of times.
- Most Probable Point Method (MPP)
 - Uses optimisation algorithm to reduce number of analyses
- Hybrid
 - Combination of MPP and MCS to improve accuracy

MANCHESTER

General Workflow

Case Study Problem Definition

Cracks found at reactor at Hunterston B nuclear power station

By David Miller BBC Scotland environment correspondent

Source: <u>http://www.bbc.com/news/uk-scotland-glasgow-west-29502329</u> on 6 October 2014

Typical Nuclear Graphite Brick

MANCHESTER

MANCHESTER

What is the consequence of a deterministic analysis?

MANCHESTER

But despite very complicated constitutive models, the simulations aren't quite right. And if they were correct, they would predict that all the bricks would crack at the same time, which they don't!

Not Quite Right

Assertion

MANCHESTER

Expansion or contraction of the material, component or structure will NOT generate internal stresses as long as

- It is free to expand or contract (it is not fixed at any point)
- It rests on a smooth surface
- It is made of a uniform material with a single coefficient of thermal expansion.

Assertion

MANCHESTER

Manchester

Expansion or contraction of the material, component or structure will NOT generate internal stresses as long as

- It is free to expand or contract (it is not fixed at any point)
- It rests on a smooth surface
 - It is made of a uniform material with a single coefficient of thermal expansion.

Hypothesis

Tiny spatial variations in material properties lead to preservice stresses that influence the expected life of a brick

- It is free to expand or contract (it is not fixed at any point)
- It rests on a smooth surface
- It is NOT made of a uniform material with a single coefficient of thermal expansion.

Experimental Work

- Characterisation of the spatial variation in material properties – to determine values for the random variable
 - Density
 - Young's modulus
 - Poisson's ratio
- Coefficient of thermal expansion assumed to be linearly proportional to density.
 - Calibrated rather than measured
 - Temperature dependent

Sampling Region

The University of Manchester MANCHESTER 1824

Density

The University of Manchester

Young's Modulus

Young's Modulus

MANCHESTER

Young's Modulus (Spines)

Young's Modulus vs Density

MANCHESTER

Spatial Correlation Length

IBFEM-4i 2019, Swansea – The Random Finite Element Method

MANCHESTER

Using the Data in a Finite Element Analysis

MANCHESTER

General Workflow

MANCHESTER

The University of Manchester

Summary

- Thermomechanical analysis
 - It is usually assumed unconstrained expansion due to a temperature change does not result in the generation of stresses
 - In this example, tiny variations in the material properties of a material designed to be uniform and isotropic (small coefficient of variation) generate stresses of up to ~5MPa
 - This occurs even before the reactor is in service. So the initial conditions used in a deterministic analysis are "wrong".
 - These may influence where and when failure will occur
 - Further finite element analysis is required to predict where and when failure will probably occur – towards probabilistic design

Dealing with uncertainty

- Can incorporate real-world uncertainties into engineering analysis, allowing their effect to be known, managed and controlled if possible.
- Provides the basis for improving the safety and quality of engineered systems through risk-informed design practice.
- Can be used to develop rational strategies for pricing, warranties, inspections, availability, maintenance, etc.

- On the pen drive, there are four associated journal papers:
 - 1. A practical review of the stochastic finite element method.
 - 2. Proof-of-concept analysis for the thermo-mechanical case study.
 - 3. Experimental work to determine the spatial variability of graphite.
 - 4. Conversion of experimental data into random variables.