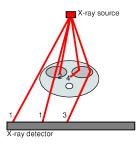
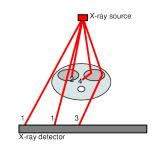
Topic 2 – Theory about X-ray attenuation: The Beer-Lambert Law

IBSim-4i 2020 Dr Franck P. Vidal 13th Aug 2020

X-photons/matter Interactions (1/2)

- X-photons cross matter;
- During their path into any material, they can interact with matter.




Illustration of X-ray photon/matter interaction

- 1. Directly transmitted photons (no interaction);
- 2. Absorbed photons;
- 3. Scattered photons;
- 4. Absorbed scattered photons.

X-photons/matter Interactions (2/2)

For most X-rays imaging modalities, only directly transmitted photons are essential:

- Scattered photons decrease the image quality;
- Absorbed photons do not reach the detector;
- Scattered photons may be ignored (but not necessarily).

 $Illustration \ of \ X-ray \ photon/matter \ interaction$

- 1. Directly transmitted photons (no interaction);
- 2. Absorbed photons;
- 3. Scattered photons;
- 4. Absorbed scattered photons.

Beer-Lambert Law (Attenuation Law)

	$N_{in}(E)$
<i>F</i> 1	
μ_2	L _p (
<i>µ</i> 2	$\downarrow L_p($
P ₄₋₁	$L_p($

Illustration of the Beer-Lambert law

- Nout(E) = Nin(E) $e(-\Sigma i i(E,Z) Lp(i))$
 - Nin(E) the number of incident photons at energy E;
 - Nout(E) the number of transmitted photons of energy E;
 - $-\,$ i the linear attenuation coefficient (in cm-1) of the ith object. It depends on:
 - $\star~$ E the energy of incident photons;
 - \star the material density of the object;
 - $\star~$ Z the atomic number of the object material.
 - Lp(i) the path length of the ray in the ith object.
- Eout = Nout(E) x E
 - Eout the energy received by the pixel, i.e. as recorded in the X-ray image.

Example (monochromatic case)

http://gvirtualxray.sourceforge.net/validation/validation_03/beer _lambert_law_monochromatic.php

Beer-Lambert Law in the polychromatic case

- There are more than one energy in the incident beam spectrum
- Just iterate over the energy channels:

$$\begin{split} & Eout = \Sigma j \ Ej \ x \ Nout(Ej) \\ & Eout = \Sigma j \ Ej \ x \ Nin(Ej) \ e(-\Sigma i \ i(Ej,,Z) \ Lp(i)) \\ & with \ j \ the \ j\text{-th energy channel} \end{split}$$

Example (polychromatic case)

http://gvirtualxray.sourceforge.net/validation/validation_05/beer _lambert_law_polychromatic.php

Back to main menu

Click here