Image based simulation of damage development in metals under mechanical loading.

J-Y Buffiere, *With the help of:* E. Maire, C. Le Bourlot

Université de Lyon INSA-Lyon MATEIS CNRS UMR5510

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES LYON

Outline

- Introduction
- Monotonic testing
 - "Classical"
 - Tracking
 - Higher spatial resolution
- Fatigue testing
 - Fatigue crack initiation from internal defects
 - Elastic case
 - Plastic case
 - Fatigue crack initiation from surface defects (AM)
 - Small representative samples
 - Lattices
- Conclusion

Outline

• Introduction

Introduction

2006 Vtome x (Phoenix x-ray / GE)

Standard ~ 2 μm voxel size

2013 EasyTom Nano (Rx Solutions)

High resolution / low attenuation

2021 DTHE (Rx Solutions)

High Energy / attenuation

Synchrotron ~ **1995 ID19, ID15, ID11, ID16...** Now for very high resolution Very fast acquisitions

Users : MATEIS research / teaching, collaboration, industrial services

Introduction

• Phase contrast, high flux, availability SWISS LIGHT SOURCE

SOLEIL is the French national synchrotron facility, a multi-disciplinary instrument and research laboratory.

SPring 8

In situ devices

Outline

- Introduction
- Monotonic testing

Study of damage during mechanical loading

• Monotonic

Study of damage during mechanical loading

Damage → creation of new surfaces in the material

 F

Outline

- Introduction
- Monotonic testing
 - "Classical"

Hard to track all particles \rightarrow average of the 20 largest

С

Growth of isolated and spherical voids in a perfectly plastic matrix [*Rice & Tracey J. Mech. Phys. Sol. 1969*]

$$\frac{dR}{R} = \alpha_{RT} \exp\left(\frac{3}{2}T\right) d \varepsilon$$

 $\alpha_{RT} = 0.272$ 25 $D_{eq}(\mu m)$ -20 largest voids smooth ■ R=2.5mm 20 R=1mm Ruang 15 10 5 0 0.2 0.8 0.4 0.6 0

> Е_{lo} с

Growth of isolated and spherical voids in a perfectly plastic matrix [*Rice & Tracey J. Mech. Phys. Sol. 1969*]

$$\frac{dR}{R} = \alpha_{RT} \exp\left(\frac{3}{2}T\right) d \varepsilon$$

 $\alpha_{RT} = 0.272$

Later revisited by Huang to better take *T* into account [Huang J. Appl. Mech. 1991] $\frac{dR}{R} = \alpha_{Huang} T^{0.25} \exp\left(\frac{3}{2}T\right) d \varepsilon \text{ for } T \le 1$ $\frac{dR}{R} = \alpha_{Huang} \exp\left(\frac{3}{2}T\right) d \varepsilon \text{ for } T > 1$ $\alpha_{Huang} = 0.427$

Growth of isolated and spherical voids in a perfectly plastic matrix [*Rice & Tracey J. Mech. Phys. Sol. 1969*]

$$\frac{dR}{R} = \alpha_{RT} \exp\left(\frac{3}{2}T\right) d \varepsilon$$

Later revisited by Huang to better take *T* into account [Huang J. Appl. Mech. 1991] $\frac{dR}{R} = \alpha_{Huang} T^{0.25} \exp\left(\frac{3}{2}T\right) d \epsilon \text{ for } T \leq 1$ $\frac{dR}{R} = \alpha_{Huang} \exp\left(\frac{3}{2}T\right) d \epsilon \text{ for } T > 1$ $\alpha_{Huang} = 0.427$

Specimen S	$lpha_{_{\sf RT}}$	$lpha_{ extsf{Huang}}$
Smooth	0.47	0.55
R=2.5mm	0.50	0.55
R=1mm	0.52	0.55

Landron et al. Acta Mater. 2011

Outline

- Introduction
- Monotonic testing
 - "Classical"
 - Tracking

Automatic tracking of cavities

18

Automatic tracking of cavities

Feature extraction

Tracks for TiAL6V alloy

Application to pure metals

<mark>Pure Aluminium</mark>

Outline

- Introduction
- Monotonic testing
 - "Classical"
 - Tracking
 - Higher spatial resolution

- Ultra high resolution during tensile test on a metal at high temperature
- Experimental setup at ID16B at ESRF J.Villanova and P.Lhuissier (SIMAP)

- Sample preparation !
- FOV smaller and smaller

- High resolution voxel size : 100nm
- « Low » resolution voxel size : 645nm
- Temperature + Mech. Load \rightarrow creep issues

Kumar, R., Villanova, J., Lhuissier, P., Salvo, L., 2019. Acta Materialia 166, 18–27. https://doi.org/10.1016/j.actamat.2018.12.020

Outline

- Introduction
- Monotonic testing
 - "Classical"
 - Tracking
 - Higher spatial resolution
- Fatigue testing

Damage characterization during cyclic loading

• Monotonic v.s. cyclic

Study of damage during cyclic loading

• Damage \rightarrow creation of new surfaces in the material f F

Outline

- Introduction
- Monotonic testing
 - "Classical"
 - Tracking
 - Higher spatial resolution
- Fatigue testing
 - Fatigue crack initiation from internal defects
 - Elastic case

Fatigue crack initiation from defects : cast alloys

- Low production costs
- Complex shapes
- Massively used in car industry
- Attractive for aerospace industry

But ...

- Casting defects (shrinkages, gas pores, oxides)
- Low fatigue properties
- Safety regulations \rightarrow limited use
- Non Destructive Inspection

Crack initiation from a sub surface microshrinkage in A357 alloy

HCF – artificial defects

 $\sigma_{_{\rm Max}}$ = 105 MPa

0 cycles

HCF – artificial defects

0 cycles

370 000 cycles

- Internal pores → **No crack nucleation**
- Final failure due to a **surface crack**

Analysis: local stress state (elastic case)

i) 3D image

ii) 3D mesh

iii) FE calculation

Analysis: local stress state (elastic case)

Direct mesh from *Avizo* ~ 300 000 triangles

Further mesh reduction for pore + sample surface (Gmsh) → 300 000 to 500 000 elements

- $\sigma_{\text{local}} \sim K_t \sigma_{\text{section}}$
- Elastic simulation
- Convex parts of the pores \rightarrow large stress concentrations

• Crack location correlate well with large K_t values

• Also true for artificial defects (*N.B.* not a synchrotron sample)

• Convoluted shapes $\rightarrow K_{f}$ as high as 4-6

- Artificial defects $\rightarrow K_{f}$ values between 2.5-3.5
- Artificial defects ≠ natural defects

Outline

- Introduction
- Monotonic testing
 - "Classical"
 - Tracking
 - Higher spatial resolution
- Fatigue testing
 - Fatigue crack initiation from internal defects
 - Elastic case
 - Plastic case

Experimental

- ESRF ID19
- 35 KeV
- Voxel sizel = 2,75 μm
- Scan duration = 45 s.
- PCO camera

- Sp./Detector distance = 200 mm
- Temperature range up to 250°C

Damage mechanisms

 σ

Modelling

Inelastic strain and stress triaxiality

S.Dezecot et al. Acta Mater. 2017

Modelling

500 µm Local probes

Strain (%)

• Cracks initiate at large strain heterogeneities

Strain (%)

Outline

- Introduction
- Monotonic testing
 - "Classical"
 - Tracking
 - Higher spatial resolution
- Fatigue testing
 - Fatigue crack initiation from internal defects
 - Elastic case
 - Plastic case
 - Fatigue crack initiation from surface defects (AM)
 - Small representative samples

- In search of the critical defect
 - Tomographic scans before and after fatigue tests
- Single struts
 - As-built
 - Post-treatment (chemical etching, HIP, ...)
- Lattice structures

Single struts samples

Octet-truss cell

• 2D map thresholding

22 detected defects Including the critical one \checkmark

• "Killer" defect : **not** the largest (area)^{1/2}

• "Killer" defect **not** the largest (area)^{1/2}

• "Killer" defect **not** the largest (area)^{1/2}

• Deep very thin defects are truncated by tomography

Outline

- Introduction
- Monotonic testing
 - "Classical"
 - Tracking
 - Higher spatial resolution
- Fatigue testing
 - Fatigue crack initiation from internal defects
 - Elastic case
 - Plastic case
 - Fatigue crack initiation from surface defects (AM)
 - Small representative samples
 - Lattices
- Conclusion

Improving crack detection: DVC

•Two images of the specimen in reference state and in deformed state:

$f(\mathbf{x})=g(\mathbf{x}-\mathbf{u})$ optical flow conservation

•From the knowledge of f and g, the problem consists in estimating **u** as accurately as possible

Improving crack detection: DVC

Ref. image f(x) Corrected image g(x-u) Residual error

Example on additive manufacturing materials

Lattice structures (AlSi10Mg alloy)

Coll. L Boniotti S.Foletti and S.Beretta

• "large" voxel size to image the sample :8 μ m

Outline

- Introduction
- Monotonic testing
 - "Classical"
 - Tracking
 - Higher spatial resolution
- Fatigue testing
 - Fatigue crack initiation from internal defects
 - Elastic case
 - Plastic case
 - Fatigue crack initiation from surface defects (AM)
 - Small representative samples
 - Lattices
- Conclusion

- X-ray tomography: a unique tool for studying damage during mechanical loading
- 3D images are key to test/validate models
- Can be used with various types of models
- Very often FE (in the field of damage studies)
- Going from the grey level image to meshes is crucial
- High spatial resolution: always good but complementary techniques can help!

Limits

C.Xiao, J-Y Buffiere Eng. Frac. Mech. 2021

Limits

Sectional view 1 a 15 um 20 µm Sectional view 2 (c) 150 µm 20 µm 5 um

- Synchrotron tomography: gray level not straightforward \rightarrow requires user judgment !
- Solution Artificial Intelligence

C.Xiao, J-Y Buffiere Eng. Frac. Mech. 2021