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Synchrotron ~ 1995 ID19, ID15, 
ID11, ID16…
Now for very high resolution
Very fast acquisitions

Users : MATEIS research / teaching, collaboration, industrial services

2006 Vtome x 
(Phoenix x-ray / GE)

2013 EasyTom Nano 
(Rx Solutions)

Standard ~ 2 µm voxel size High resolution 
/ low attenuation

Introduction 

2021 DTHE
(Rx Solutions)

High Energy / attenuation



Introduction

● Phase contrast, high flux, availability 

...
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heating cooling

Hydrostatic 
pressure

FatigueTension
compression

In situ devices

J-Y Buffiere et al. Exp. Mech. 2010
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Study of damage during mechanical loading

F

ΔL

● Monotonic 



Study of damage during mechanical loading

● Damage  →  creation of new surfaces in the material

F

Monotonic

300 µm
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Outline 
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● “Classical”
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Cavity growth in steels

Hard to track all  particles → average of the 20 largest
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Cavity growth in steels
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Automatic tracking of cavities
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Automatic tracking of cavities



.csv

.vtk

C. Le Bourlot S. Dancette

Feature extraction



Tracks for TiAL6V alloy




Pure MagnesiumPure ZirconiumPure Iron

Pure Silver

Pure AluminiumApplication to pure metals
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Kumar, R., Villanova, J., Lhuissier, P., Salvo, L., 2019.  Acta Materialia 166, 18–27. https://doi.org/10.1016/j.actamat.2018.12.020 

● Ultra high resolution during tensile test on a metal at high temperature

● Experimental setup at ID16B at ESRF J.Villanova and P.Lhuissier (SIMAP)

Towards higher spatial resolution 

https://doi.org/10.1016/j.actamat.2018.12.020


● Sample preparation !

● FOV smaller and smaller

Towards higher spatial resolution 



● High resolution voxel size : 100nm

● « Low » resolution voxel size : 645nm

● Temperature + Mech. Load → creep issues

Towards higher spatial resolution 



Towards higher spatial resolution 

Kumar, R., Villanova, J., Lhuissier, P., Salvo, L., 2019.  Acta Materialia 166, 18–27. https://doi.org/10.1016/j.actamat.2018.12.020 

https://doi.org/10.1016/j.actamat.2018.12.020
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Damage characterization during cyclic loading

● Monotonic v.s. cyclic

F

ΔL



Study of damage during cyclic loading

● Damage  →  creation of new surfaces in the material

F
F

Monotonic

Cyclic

300 µm

100 µm



32
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● Fatigue testing
● Fatigue crack initiation from internal defects

● Elastic case



Fatigue crack initiation from defects : cast alloys

● Low production costs

● Complex shapes

● Massively used in car industry

● Attractive for aerospace industry



Initiation from defects : cast alloys

But ...

● Casting defects (shrinkages, gas 
pores, oxides)

● Low fatigue properties

● Safety regulations → limited use

● Non Destructive Inspection

Crack initiation from a sub surface micro-
shrinkage in A357 alloy

500 µm



HCF – artificial defects

0 cycles

s
Max

 = 105 MPa

σ



HCF – artificial defects

0 cycles 370 000 cycles

0° 90°s
Max

 = 105 MPa

● Internal pores →  No crack nucleation
● Final failure due to a surface crack

σ



Analysis: local stress state (elastic case)

i) 3D image ii) 3D mesh iii) FE calculation



Analysis: local stress state (elastic case)

Further mesh reduction  for pore + sample surface 
(Gmsh) → 300 000 to 500 000 elements

Mesh reduction
(Gmsh)
~ 30000 triangles

Direct mesh 
from Avizo
~ 300 000 
triangles



● σlocal ~ Kt σsection 
● Elastic simulation
● Convex parts of the pores → large stress concentrations

Analysis: local stress state



● Crack location correlate well with large Kt values

Analysis: local stress state



● Also true for artificial defects 
( N.B. not a synchrotron sample)

Analysis: local stress state



SLS-14 Pore 3

SLS-445 Pore 1

● Convoluted shapes → K
t
 as high as 4-6

Analysis: local stress state



● Artificial defects →  K
t
 values between 2.5-3.5

● Artificial defects ≠ natural defects

Analysis: local stress state
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Experimental 

Coll. A.Koster V.Maurel  (ENMP)
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Sample

Tensile load

Furnace

X ray beam

CT Scans     R
σ
 = 0,1    ƒ = 0,1 Hz

~~~F
o

rc
e

Time

Relaxation

 ...

~ ~~~~~~~ ~

● ESRF ID19
● 35 KeV
● Voxel sizel = 2,75 µm
● Scan duration = 45 s.
● PCO camera

● Sp./Detector distance = 200 mm
● Temperature range up to 250°C

Experimental

S.Dezecot et al. Scripta Mater. 2016
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Damage mechanisms

σ
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Modelling

Inelastic strain and stress triaxiality 
S.Dezecot et al. Acta Mater. 2017
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Modelling

Local probes 

● Cracks initiate at large strain heterogeneities  
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● In search of the critical defect
● Tomographic scans before and after 

fatigue tests

● Single struts
● As-built

● Post-treatment (chemical etching, HIP, 
…)

● Lattice structures

Octet-truss cell

Single struts samples

8mm

8mm
2mm

Crack initiation in AM materials
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Notch
defects

Plate pile 
stacking 
defects

Stuck powder

 (µm)

 (
µ

m
)

 (µm)

 (
µ

m
)

Internal

Spherical pores (from atomisation)

LOF defects

Surface

Z=DF

Limited porosity (<0.05 % vol.) 

Crack initiation in AM materials
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z

r

θ

“unfolding” of the surface

θ

r

z

Height measurement
90°180°

Crack initiation in AM materials
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d
visual

d
50

2D map of local height variations

Crack initiation in AM materials



55

● 2D map thresholding
22 detected defects
Including the critical one

Crack initiation in AM materials
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22 detected defects
Including the critical one

Crack initiation in AM materials
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● “Killer” defect : not the largest (area)1/2

Crack initiation in AM materials
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● “Killer” defect not the largest (area)1/2

√area=
169µm

Largest defect

Crack initiation in AM materials
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● “Killer” defect not the largest (area)1/2

√area=
90µm √area=

169µm

Killer defect Largest defect

Crack initiation in AM materials
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● Deep very thin defects are truncated by tomography

Crack initiation in AM materials
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Reference f(x) Deformed g(x)
●Two images of the specimen in reference state and in deformed 
 state:

f(x)=g(x-u) optical flow conservation

●From the knowledge of f and g, the problem consists in 
estimating u as accurately as possible

Improving crack detection: DVC



x
y

z

13N 217N

          Ref. image f(x)    Corrected image g(x-u)       Residual error

- =

Improving crack detection: DVC



Example on additive manufacturing materials

Coll. L Boniotti S.Foletti and S.Beretta 

Lattice structures (AlSi10Mg alloy)

● “large” voxel size to image the sample :8 µm
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Conclusion 

● X-ray tomography: a unique tool for studying damage 

during mechanical loading

● 3D images are key to test/validate models

● Can be used with various types of models

● Very often FE (in the field of damage studies)

● Going from the grey level image to meshes is crucial

● High spatial resolution: always good but complementary 

techniques can help!



Limits

C.Xiao, J-Y Buffiere Eng. Frac. Mech. 2021



Limits

C.Xiao, J-Y Buffiere Eng. Frac. Mech. 2021

● Synchrotron tomography: gray level not straightforward → requires user judgment !
● Solution Artificial Intelligence
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