

An explicit finite element method for Navier-Stokes-Brinkman equations

LIANG YANG

Image based simulation for industry 2021 (IBSim-4i) October 2021, London

www.cranfield.ac.uk

Career

- Lecturer in Marine Renewable Energy Systems at Cranfield University
- Postdoc in Computational Physics, MSc and PhD in Computational Mechanics
- > Finite element analysis and massively parallel solvers
- Coupling with radiation transport
- Wave tank experiment

Twitter: lyang200809

Linkedin: https://www.linkedin.com/in/lyang7/

https://www.cranfield.ac.uk/people/dr-liang-yang-23276693

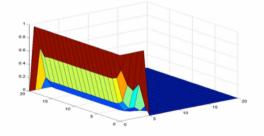
- Multiphase fluid-rigid-flexible structure interaction
- Wave-structure interaction

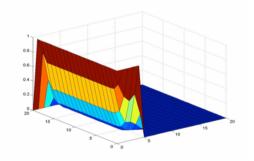
A few challenges for image based simulations

Popular algorithm

- lattice Boltzmann method
- finite difference method
- finite volume method
- discontinuous Galerkin
- finite element

- Extremely large scale voxels
- Memory costing
- Parallel efficiency

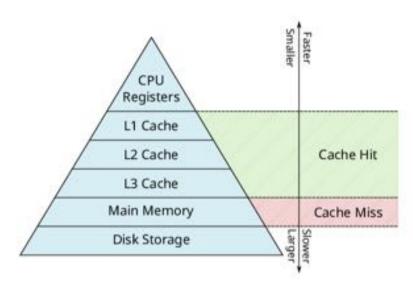

We need

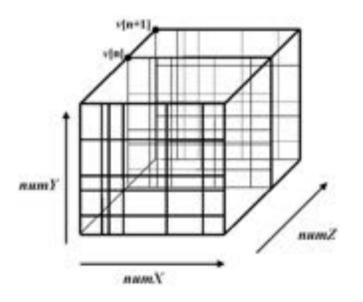


Finite element for fluid flow

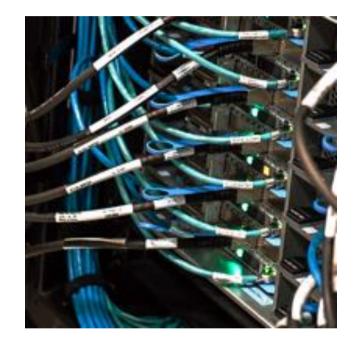
Stabilised finite element for

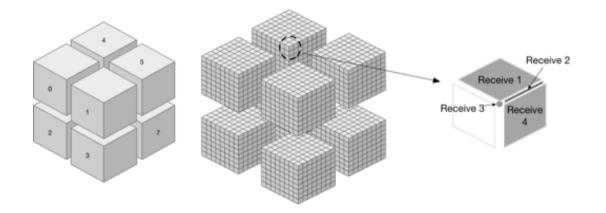
- Convection dominated problem
- Equal order interpolation
- Turbulence modelling
- Matrix-free implementation
- Fully explicit with artificial compressibility

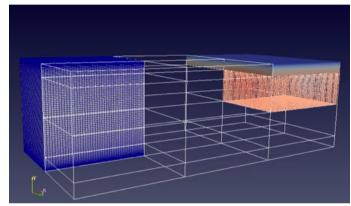



Mixed elements				
Figure	Name	Velocity interpolation	Pressure interpolation	
0	Q1Q0	Linear	Constant	
	Q1Q1	Linear	Linear	
$\boxed{}$	Q2Q1	Quadratic	Linear	
\square	Q2Q2	Quadratic	Quadratic	
\triangle	P1P0	Linear	Constant	
\bigtriangleup	P1P1	Linear	Linear	
\triangle	Mini	Linear	Linear	
\triangle	P2P1	Quadratic	Linear	
\triangle	P2P2	Quadratic	Quadratic	
Velocity node				
 Pressure node 				

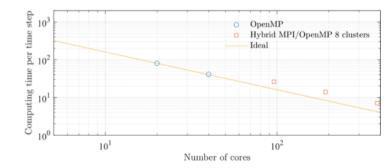
Large scale computing

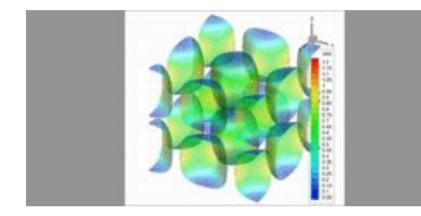

- Matrix-Free scheme
- avoid matrix-assembly and simplify domain decomposition

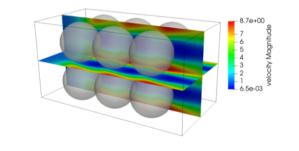

- Cartesian grid
- avoid indirect addressing



- Governing equations Navier-Stokes equations of fluid dynamics; any advection-diffusion-reaction problem, Naiver-Stokes-Brinkmann
- Dimensionality: 2D and 3D
- External routines: Python, Numpy, MPI
- Element types: Quadrilaterals, Hexahedra
- Platforms: Tier 2 cluster
- Spatial Discretisation: Stabilised Finite Element
- Parallelisation: Hybrid OpenMP/MPI
- Build in LES model
- Temporal Discretisation: Explicit
- Solution Files Exported: VTK, Tecplot
- Applications: aerodynamics, aeroacoustics, environmental flow, porous medium flow, haemodynamics.

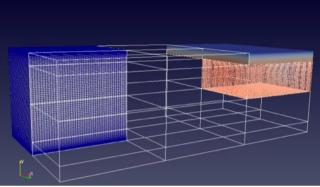


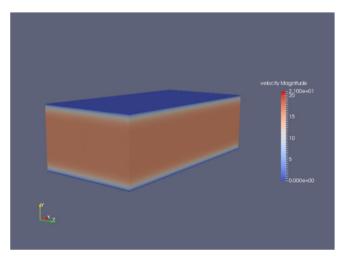

Elements size	Peak memory usage (GB)
128x128x128	0.68
256x256x256	5.44
512x512x512	43.51
1024x1204x1024	351



×,

Turbulent flow: LES/DNS https://doi.org/10.1007/s00466-016-1332-9





Flow over packed bed

Trailing edge noise

Aeroacoustics applications (unpublished)

Non-reflection boundary conditions

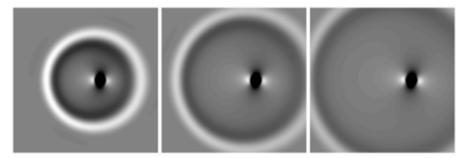
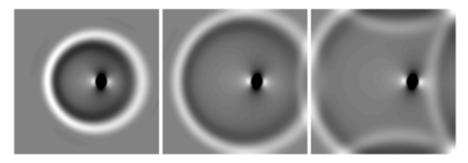
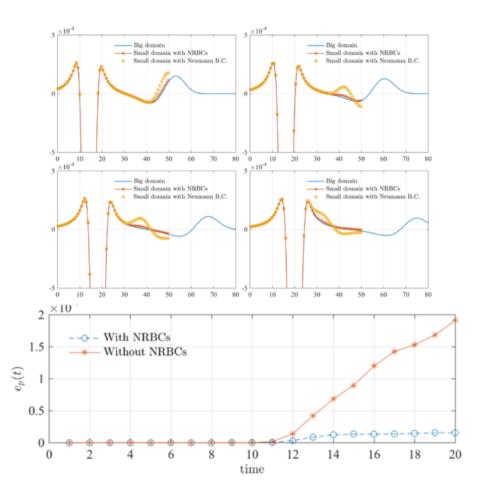
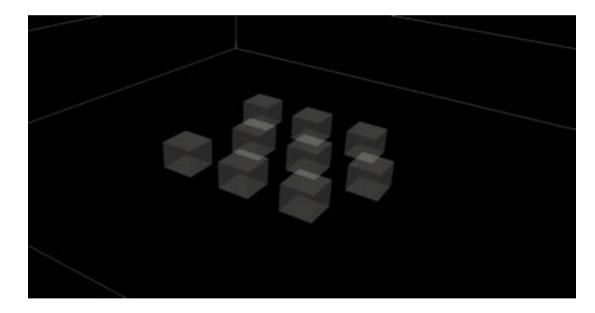
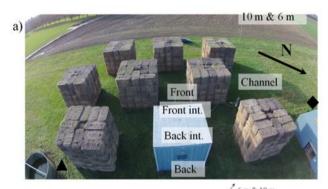
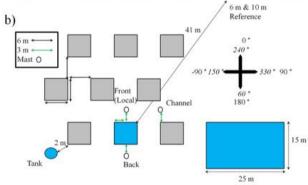


Figure 3: Contours of p_h in the large domain for the big/small domain benchmark problem in 2D. From the left to right: t = 10, t = 15, t = 20, dx = 0.01.

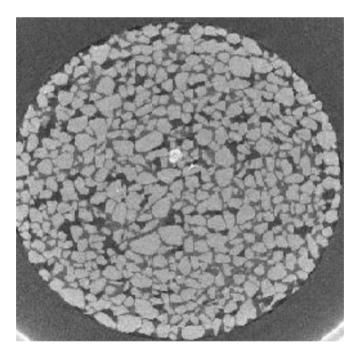

Figure 4: Contours of p_h in the small domain for the big/small domain benchmark problem in 2D. From the left to right: t = 10, t = 15, t = 20, dx = 0.01.



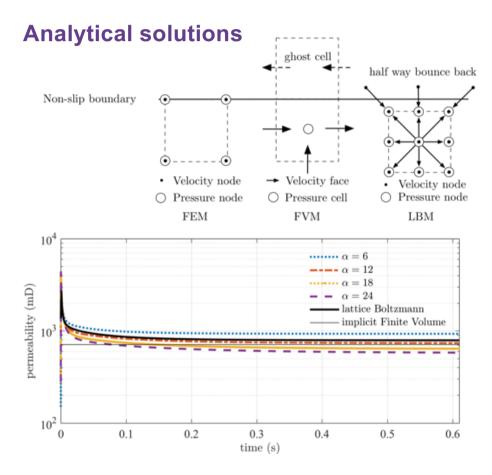


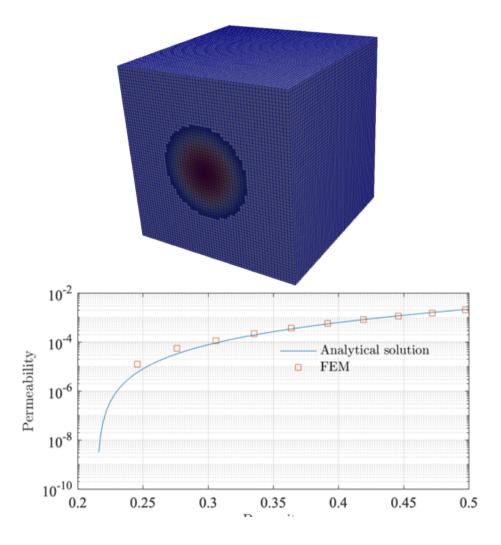
Urban air flow (unpublished)

Investigation the influence of a staggered array on the Silsoe cube façade pressures



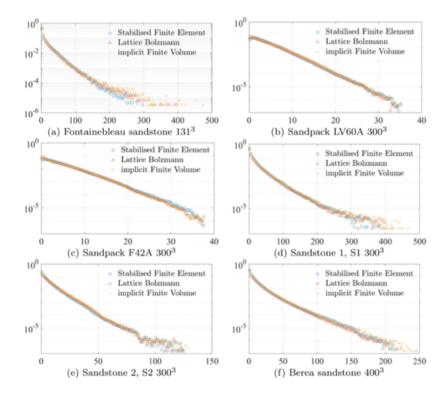
Digital rock physics https://doi.org/10.1007/s10596-019-09837-4

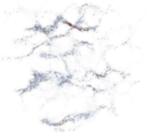

Permeability study

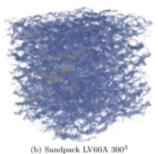


Initial Pixels FEM Mesh Impose B. C.

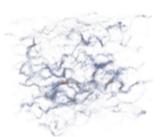
Cross-section of Micro CT Image of Sand Pack LV60A

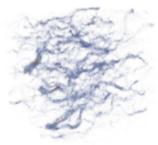


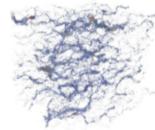




Comparison of different approaches


Velocity distribution

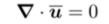


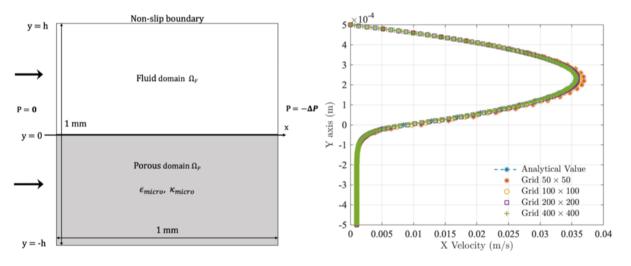

(a) Fontainebleau sandstone 131³

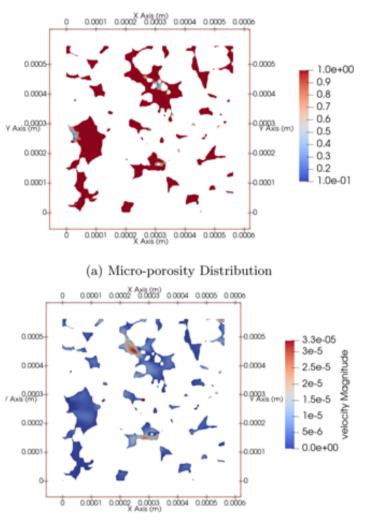
(c) Sandpack F42A 300³

(d) Sandstone 1, S1 300³

(e) Sandstone 2,S2 300³


(f) Berea sandstone 400³

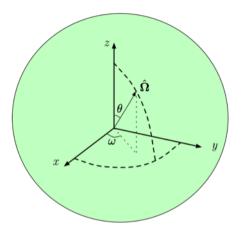


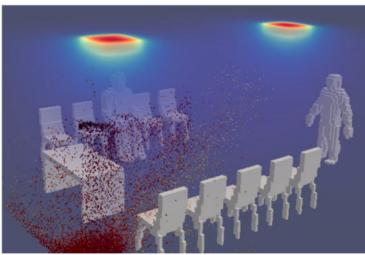

Grayscale rocks

The average Navier-Stokes-Brinkman equations are defined as

 $-\frac{\nu}{\epsilon_{\mathrm{micro}}}\nabla^2 \overline{\boldsymbol{u}} + \overline{\boldsymbol{u}} \cdot \boldsymbol{\nabla} \overline{\boldsymbol{u}} + \boldsymbol{\nabla} \overline{p} + \nu \kappa_{\mathrm{micro}}^{-1} \overline{\boldsymbol{u}} = \boldsymbol{f}$

(b) Velocity Distribution




Wyvern: fluid-particle-radiation coupling solver

$$\frac{\partial}{\partial t}\psi\left(r,\widehat{\Omega},E,t\right)+\widehat{\Omega}\cdot\nabla\psi\left(r,\widehat{\Omega},E,t\right)+\Sigma_{t}(r)\psi\left(r,\widehat{\Omega},E,t\right)=\int_{\widehat{\Omega}'}d\widehat{\Omega}'\Sigma_{s}\left(r,\widehat{\Omega}'-\widehat{\Omega}\right)\psi\left(r,\widehat{\Omega}',E,t\right)+S\left(r,\widehat{\Omega},E,t\right).$$

Particle travel on unit sphere, $\widehat{\Omega}$ denotes the direction of particle travel. The azimuthal direction is denoted by ω , and the polar direction by θ .

Deterministic solver for Boltzmann Transport Equatio developed by Dr. A.G. Buchan from Queen Mary University of London.

Buchan, A. G., Yang, L., & Atkinson, K. D. (2020). Predicting airborne coronavirus inactivation by far-UVC in populated rooms using a high-fidelity coupled radiation-CFD model. Scientific reports, 10(1), 1-7.

Buchan, A. G., Yang, L., Welch, D., Brenner, D. J., & Atkinson, K. D. (2021). Improved estimates of 222 nm far-UVC susceptibility for aerosolized human coronavirus via a validated high-fidelity coupled radiation-CFD code. Scientific Reports, 11(1), 1-9.

- FEM for flow problems on images
- Stabilised FE is a unified way to solve fluids across the scales (Darcy-Stokes-Turbulence)
- Matrix-free implementation can reduce memory costs and suitable for HPCs
- Massive parallel x86 CPU platform scaled well
- Algorithm development: multiphase flow, solid mechanics, fluid-structure interaction
- On-going development: documentations, tutorial, hoping release in 2021
- On-going application: wind turbine simulation, UVC disinfection modelling

Acknowledges:

Mr. L.Balazi (CEA), previous Cranfield student

Dr. J. Yang (Total)

Dr. A.G. Buchan (Queen Mary University of London)

Prof. S. Badia (Monash University)