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MOTIVATION: CO, LEAKAGE IN THE SUBSURFACE

1. Faults
2. Drilling wells

3. Fluid-escape structures:
- Sandstone intrusions

We want to sample these

— sandstone intrusions to quantify
“| permeability and improve our

-1 models...

Key [%]Injected sand [] Mudstone

Adapted from Cobain et al. 2015



X-RAY MICRO-CT EXPERIMENT — MAY 2018

Analysed samples at Diamond
Synchrotron Beamline 113-2, Oxford.
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FLUID-ESCAPE SYSTEM

 Heterogeneous sandstones: 15-25 % clay and cement volume.
10 mm diameter samples analysed using X-ray micro-CT.
* 50 mm diameter samples analysed using laboratory measurements.



METHOD — TOTAL & CONNECTED POROSITY

—
1.5 mm

* Connected porosity obtained from the sub-volume




IMAGE-BASED FLUID-FLOW SIMULATIONS

* Absolute permeability simulation




OUTLINE X-RAY CT METHODOLOGY WORKFLOW
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Image reconstruction

Image segmentation

Fluid simulation comparison
Representative Volume
Image Resolution



1. IMAGE RECONSTRUCTION

 Correct COR (Centre of Rotation) * 5GB file
* No beam hardening e 14003 voxel volume
* Filtering of noise and ring artefacts ¢ 8 bitimage (16 also possible)



X-RAY CT METHODOLOGY WORKFLOW
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Image segmentation
Fluid simulation comparison

Representative Volume
Image Resolution



2. IMAGE SEGMENTATION - 2 PHASES

e Accurate segmentation achieved using trainable 3D Weka - FlJI.
* Training on 1003 voxel volume
* Tiling algorithm applied to reduce memory requirements



2. IMAGE SEGMENTATION - 2 PHASES
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2. IMAGE SEGMENTATION - 2 PHASES

Standards




2. IMAGE SEGMENTATION - 3 PHASES
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* Aclay and cement phase is also defined, which is assigned to the pore
phase for porosity calculations, and the solid phase for permeability
calculations.



2. IMAGE SEGMENTATION - 3 PHASES

Greyscale

3 Phases

2 Phases




X-RAY CT METHODOLOGY WORKFLOW

3. Fluid simulation comparison

4. Representative Volume
5. Image Resolution



3. PERMEABILITY SIMULATION COMPARISON

Voxel Based Solver
(VBS)

Tetrahedral Mesh




3. PERMEABILITY SIMULATION COMPARISON

* Experiment simulation based on Stokes equations.
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Boundary conditions:

1. No-slip condition at fluid-solid
interfaces

2. Solid phases added
perpendicular to main
simulated flow direction

3. Stabilization zone created
where pressure is quasi static

4. Input pressure, output pressure
and flow rate user defined.

Inflow

Outh:)w



3. PERMEABILITY SIMULATION COMPARISON
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Two simulation
methods are
reasonably
comparable
between 10-
1000mD range.



3. DEPENDENCY OF MESH DENSITY
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*  Nyesy = 2.6 =300,000
mesh elements

* Ny 1.3=1,950,000
mesh elements




X-RAY CT METHODOLOGY WORKFLOW

4. Representative Volume
5. Image Resolution



4, REPRESENTATIVE VOLUME
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* Pore properties are acquired from a number of different volume sizes,
to demonstrate the optimum representative elementary volume size
(REV).
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4, REPRESENTATIVE VOLUME

Size (mm)
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X-RAY CT METHODOLOGY WORKFLOW

5. Image Resolution



5. IMAGE RESOLUTION




IMAGE RESOLUTION




5. IMAGE RESOLUTION
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X-RAY CT METHODOLOGY WORKFLOW

6. Image Resolution vs Volume size trade-off



6. UPSCALING — ARITHMETIC MEAN

1.4 mm

* Permeability calculations are acquired from a number of different sub-
volume sizes, to determine whether a REV size is achieved?



6. UPSCALING — ARITHMETIC MEAN
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6. UPSCALING — ARITHMETIC & HARMONIC MEAN
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6. UPSCALING — PORE NETWORK MODELLING

« PNM allows a REV to be achieved (dotted line).

¥, * REVis determined as NREV 2 7 for all samples.
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6. UPSCALING — NUMERICAL COARSENING

Numerical coarsening also
allows a REV to be
achieved (dashed line).

e REVis determined as NREV
> 7 for all samples.
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X-RAY CT METHODOLOGY WORKFLOW



CONCLUSION - POROSITY
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CONCLUSION — ABSOLUTE PERMEABILITY

One Subvolume (mD) 25-760 3-1137 0-296 164-511

Upscaling - Numerical Coarsening (mD) 355 479 57 n/a

Upscaling - Pore Network Modelling (mD) 291 500 23 235
Upscaling—Arithmetic mean (mD) 294 379 28 393

Upscaling—Harmonic mean (mD) 136 39 <1 350

Physical Measurement (mD) 83 25 50 275

Fac. 6 - 4.86 pm
-.___\‘ T il




Conclusion

1.

2.

Clay minerals and cement which are porous and impermeable,
should be segmented as a separate phase.

Porosity and permeability are both highly sensitive to
segmentation method, image resolution and volume size.

Upscaling approaches can assist in overcoming the trade-off
between image resolution and sample size.

The workflow devised should ensure a more robust, reliable and
repeatable methodology for X-ray micro-CT image processing
and image-based modelling of heterogeneous sandstone rock.
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« Callow et al. 2020 — ‘Optimal X-ray micro-CT image based methods for

porosity and permeability quantification in heterogeneous sandstones’
Geophys. J. Int. 223, 1210-1229, doi: 10.1093/gji/ggaa321
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Full Workflow

Image acquisition

No25&N,2 10
I

Image reconstruction

e.g. Savu

Image filtering

Non-local means filter

Image segmentation

3D Trainable Weka
Segmentation result 1 Segmentation result 2
Pore phase: Voids Pore phase: Voids + Clay & cement
Solid phase: Grains + Clay & cement Solid phase: Grains
| I
Properties Properties

Connected Porosity (2.) Total Porosity (2,)

Nepey 25 & N, 210 Neev 25 &N, 210

Numerical Coarsening (N.C.)

Effective Grain size (D,,) distribution |
Permeability (k) simulation

Pore size (D,) distribution
Nepey 25 & N, 210 Neey 27 & N, 210




Numerical Coarsening
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b Permeability Comparison
1000 _ E ® Physical laboratory measurement
—E B ? ? St1 ¥ Interpolated from multiple subvolumes
é 100 _ K. | > Numerical Coarsening (Fac. 3)
~ . C X' Pore Network Modelling
Q B ¢ Upscaling — Harmonic-Arithmetic mean
10 E | A Upscaling — Harmonic mean
: ° :
1 1 1111l 1 ||‘||||I 11l 1 1111111
1 10 100 1000 10000
Lab. k, (mD)

One Subvolume (mD) 25-760 3-1137 0-296 164-511
Upscaling - Numerical Coarsening (mD) 355 479 57 n/a

Upscaling - Pore Network Modelling (mD) 291 500 23 235
Upscaling—Arithmetic mean (mD) 294 379 28 393

Upscaling—Harmonic mean (mD) 136 39 <1 350

Physical Measurement (mD) 83 25 50 275



Equations

quu—Vp:O} @)
V-u=0|"
where u is the fluid velocity vector, p is the simulated fluid pressure
and p is the dynamic viscosity of the fluid.

Once eq. (4) is solved through convergence of the simulation and
the volumetric flow rate (Q) is calculated, the permeability (k) can
be estimated from Darcy’s law:

L
P 0

= ; 5
APA %

The number of mesh elements per unit volume (mesh density)
can influence the output value of absolute permeability. The number
of mesh elements used for a sample volume can be defined as:

E
Wi = — (6)

Ax
where E; is the mean edge length of a tetrahedral mesh element and
Ax is the image voxel size. Decreasing values of Nygsy correspond
to an increased mesh element density. A Nygsy value of one repre-
sents a sample volume with tetrahedral elements equal in length to
the image voxel size.

The permeability of the network is calculated using Darcy’s law
(eq. 5), whereby total flow rate is deduced from a linear system of
equations of flow rate between each pore:

g =D AP —PDgy, (7)

where Q is the volumetric flow rate, P is the pressure in each pore
pair i,/ and g;; is the hydraulic conductance of the throat between
each pore pair i,j, given by:

T Ii
= — ). 8
8ij 810 [ij (8)

where p is fluid viscosity, and the throats are represented by cylin-
drical pipes of radius » and length / between each pore pair i,j.

[t is assumed that the PNM is filled with a single-phase, incom-
pressible fluid, with steady state, laminar flow, with mass conserva-
tion for each pore body (Avizo 2018).



METHOD — PORE NETWORK MODELLING

* A pore network model is derived
from the connected pore volume




Context

. - Growing field of carbon capture and
storage

- Way of reducing carbon dioxide
(Greenhouse gas) in the atmosphere

o b The Greenhouse Effect
- Large proportion of our energy comes |
from the burning fossil fuels '
- Increased CO, emissions in the ‘ p
atmosphere J
- Problems: Increased sea level rise, A

ocean acidification and increased
extreme weather events



