

Research Institute in Civil Engineering and

Mechanics

Micro-Scale Results from the Benchmark Exercise on the Image-Based Permeability Prediction of Composite Reinforcements

Elena Syerko, Christophe Binetruy, Tim Schmidt, David May

Image-Based Simulation for Industry - 2022

London, 17-21 October 2022

Contents

CENTRALE NANTES

- 2. Motivation and objectives of the benchmark
- 3. Benchmark approach
- 4. Input image data for micro-scale stage
- 5. Analysis of micro-scale results
- 6. Conclusions and way forward

Context

Liquid Composite Moulding (LCM) Process

Motivation of benchmark

- 1. Fiber reinforcements in composites are special class of porous media:
 - dual-scale porosity,
 - anisotropy,
 - variability.
- 2. Very few commercial software to compute permeability of porous media. The majority not designed to address multi-scale fibrous media.
- 3. Benchmarks of experimental measurements of permeability of fibrous preforms revealed high discrepancy of results at least ~20% [*N.Vernet et al, 2014*], [*D.May et al, 2019*], [*A.Yong et al, 2021*].
- 4. Influence of material geometrical variability on permeability is difficult (impossible at micro-scale) to appreciate through a purely experimental effort.

Benchmark approach

Objective: develop general guidelines for the image-based numerical prediction of permeability of engineering textiles.

- Already **segmented** images of the material are provided to eliminate possible sources of variation.
- No fixed conditions (method, boundary conditions,...) for the calculations for the <u>first</u> stage of the benchmark.

Choice limited by the computational resources:

- discretization;
- 2D/3D formulation;
- subdivision
 into sub volumes

Benchmark approach

16 participants from 10 countries

LPAC, Lausanne IVW, Kaiserslautern 3SR Lab, Grenoble ITWM, Kaiserslautern **ICI**. Centrale Nantes **TENSYL**, Périgny GeM, Centrale Nantes KU Leuven Universität Stuttgart

University of Nottingham IMT Lille Douai RISE, Göteborg Ferdowski University of Mashdad National University of Singapore Skoltech, Moscow Mines Saint-Etienne Siemens Industry Software, Leuven Khalifa University, Abu Dhabi

Benchmark approach

Input image data

Glass fibre woven fabric (295 g/m2)

Tow specifications:

- 3 yarns twisted in a tow
- 40 twist/meter => 1 twist / 25 mm
- fibre diameter: 7.5-9.3 μm (data sheet: 9 μm)

Scan nominal resolution 0.52 µm³

Provided <u>segmented</u> volume with defined two phases (~1000 x 120 x 1000 voxels)

✓ Averaged over tow sample fibre volume content (FVC): 56.46%

Overview of micro-scale results

4b • 5 4c • 6a • 6b • 7a × 7b • 8a • 8b • 9 • 10a • 10b • 11 • 12a • 12b • 12c • 12d • 13 • 14a • 14b • 15a • 15b • 16a • 16b • 16c • 16d • 16e • 16f • 16g • 16h • 16i • 16j • 16k • 16l ▲ 16m ▲ 16n ▲ 16o ▲ 16p ▲ 16g ▲ 16r ▲ 16s ▲ 16t ▲ 16u ▲ 16v

- \succ 3 participants provided results in **2D** (without axial)
- > Only two participants used the same method and settings

Overview of methods, models, and parameters used

Participant #	Numerical approximation	Discretization	Flow model	2D / 3D formulation	Physical variables formulation	Model size, voxels / Voxel size, µm³	FVC, %
1	FVM	Voxel-based	Stokes	3D	SIMPLE	1003x973x124 / 0.521 ³ µm ³	56.46
2	FEM	Geometry-based	Navier-Stokes	2D	mixed velocity-pressure	10 2D slices of ≈1003x124 / 0.521³ µm³	56.73 (55.06 – 59.54), 58.54 (57.08 – 61.39)
3	FVM	Voxel-based	Navier-Stokes	3D	mixed velocity-pressure	1800x180x200 / 0.2605 μm x 2.605 μm x 0.2605 μm	57.00
4	CVFEM	Voxel-based	Navier-Stokes	3D	mixed velocity-pressure	10 sub-volumes of ≈1003x100x124 for Kxx,Kzz 10 sub-volumes ≈100x973x124 for Kyy / 0.521³ μm³	56.46 (54.02 – 58.78), 56.46 (48.42 – 60.88)
5	FVM	Voxel-based / LIR	Stokes	3D	mixed velocity-pressure	$1003x973x124 / 0.521^3 \mu m^3$	56.46
6	FEM	Geometry-based	Stokes	2D	mixed velocity-pressure	973 2D slices of 1003x124 / 0.521 $^{3}\mu\text{m}^{3}$	55.87
7	FVM	Geometry-based	Navier-Stokes	3D	SIMPLE	1003x973x124 / 0.521 ³ µm ³	59.87
8	FDM	Voxel-based	Stokes	3D	mixed velocity-pressure	972x972x108: 648 sub-volumes of $54x54x54/0.521^3\mu\text{m}^3$	57.16
9	FVM	Geometry-based	Stokes	3D	mixed velocity-pressure	16 sub-volumes of ≈251x243x124 / 0.521³ μm³	56.36 (46.96 – 60.84)
10	FEM	Voxel-based	Stokes	3D	pseudo-compressibility (penalization)	64 sub-volumes of ≈126x122x124 / 0.521 ³ µm ³	56.46 (46.49 – 61.81)
11	FVM	Geometry-based	Navier-Stokes	3D	mixed velocity-pressure	1003x679x124 / ≈0.7368³ μm³	58.69
12	FVM	Voxel-based / LIR	Stokes	3D	SIMPLE mixed velocity-pressure	1003x973x124 / 0.521 ³ μm ³	56.46
13	FVM	Geometry-based	Navier-Stokes	3D	mixed velocity-pressure	$124x192x124 / 0.521^3 \mu m^3$	59.54
14	FEM	Geometry-based	Stokes	2D	mixed velocity-pressure	973 2D slices of 1003x124 / 0.521 $^3\mu\text{m}^3$	56.46, 55.57
15	FEM	Geometry-based	Stokes	3D	mixed velocity-pressure	1003x973x124 / 0.521 ³ µm ³	56.46, 51.00
16	FVM FDM	Voxel-based / LIR	Stokes	3D	SIMPLE mixed velocity-pressure	1003x973x124 / 0.521³ μm³ 10 sub-volumes ≈1003x100x124 / 0.521³ μm³	56.46, 56.46 (54.02 – 58.78)

Influence of cropping into sub-domains

Influence of domain dimensions

CENTRALE NANTES

No convergence of permeability with increasing domain size up to the entire sample volume:

Transverse Kzz is higher than transverse Kxx

1/8th of in-plane dimensions, not statistically representative

Effect of BC in tangential direction for Kzz is minimized

Influence of boundary conditions

Correlation with fiber volume content

FVC

FVC 58.52%

FVC 58,78%

- discretization of domain.

Cluster of values at FVC = 56.46% has a CV of 16%. \succ

Correlation with fiber volume content

Correlation with fiber volume content: 2D/3D

Leibniz-Institut für Verbundwerkstoffe

CENTRALE

NANTES

Correlation with fiber volume content: 2D/3D

Leibniz-Institut für Verbundwerkstoffe

CENTRALE

NANTES

Correlation with fiber volume content: 2D/3D

Computation on a real image vs. a digital twin

- Varying FVC 54-59% along the fibre direction
- Varying fibre diameter 7.5-9.3 μm

	K _{xx} , m ²	K _{yy} , m ²	K _{zz} , m ²
CV	69%	40%	69%

Correlation between results #15a (image) and #15b (digital twin) using the same method

(generated by random sequential addition method in #15b)

- Constant FVC 51% along the fibre direction
- Constant fibre diameter 9 µm

Assumptions:

- fibres perfectly aligned
- constant fibre diameter
- no twist

Summary and conclusions

□ After detailed analysis of results => reduced coefficient of variation

- Importance of calculation of full permeability tensor, which is a symmetric positive definite second order tensor. Stokes equation to address the creeping flow condition.
- Dominant effect of:
 - permeability identification technique;
 - BC in tangential direction (compared to the BC in flow direction);
 - > number of sub-domains used in renormalization technique.

❑ When principal directions of flow are unknown, <u>no-slip</u> and <u>symmetric BC</u> are not convenient.

Resulting cluster of permeability values

	K _{xx} , m ²	K _{yy} , m ²	K _{zz} , m ²
Mean	3.2E-14	9.4E-13	5.2E-14
CV	24%	14%	25%

 Subdivision into sub-domains with subsequent renormalization can be a reasonable solution, but highly dependent on:
 i) number of sub-domains;

ii) presence of transverse anisotropy effects in the microstructure.

❑ No definite conclusion on the correlation of 2D/3D solutions based on the results of the benchmark for this type of microstructure.

	K _{xx} , m ²	K _{yy} , m ²	K _{zz} , m ²
Mean	3.2E-14	9.4E-13	5.2E-14
CV	24%	14%	25%

To access 3D image data of the first stage of the benchmark on the repository: <u>https://doi.org/10.5281/zenodo.6611926</u>

 Subdivision into sub-domains with subsequent renormalization can be a reasonable solution, but highly dependent on:
 i) number of sub-domains;

ii) presence of transverse anisotropy effects in the microstructure.

- No definite conclusion on the correlation of 2D/3D solutions based on the results of the benchmark for this type of microstructure.
- E. Syerko, T. Schmidt, D. May, C. Binetruy, S.G. Advani et al. Benchmark Exercise on Image-Based Permeability Determination of Engineering Textiles: Microscale Predictions // Composites Part A: Applied Science and Manufacturing 2022 (submitted).

Resulting cluster of permeability values

	K _{xx} , m ²	K _{yy} , m ²	K _{zz} , m ²
Mean	3.2E-14	9.4E-13	5.2E-14
CV	24%	14%	25%

In-house developed solution PoroS

- \succ Stokes / Brinkman solver;
- Pseudo-compressibility formulation;

> Homogenization technique for permeability tensor calculation based on the equivalence of dissipated at different scales powers.

> **Image-Based Porous Medium Permeability Solver**

(IDDN.FR.001.400009.000.S.P.2022.000.20600)

PoroS

Flow calculated through the fibrous structure sample

CENTRALE

Génie Civil et Méca

NANTES

Values situated within the cluster of benchmark results.

Second stage of the Virtual Permeability Benchmark at

meso-scale of the material is on-going until December 31st 2022.

For further questions on the Virtual Permeability Benchmark you can contact:

