When simple models fail CT-FEA simulations of metal foams

Artem Lunev 1,2

¹ITMO University, Saint-Petersburg, Russia

 $^2 \rm Netzsch-Gerätebau$ GmbH, Selb, Germany

Федеральное государственное бюджетное учреждение науки Физический институт имени П.Н. Лебедева

Российской академии науч

The University of Manchester

Artem Lunev

When simple models fail

1 / 25

Background

Fourier's law

Heat flux: $\mathbf{q} = -\lambda \nabla T$, where λ – thermal conductivity [W/(m·K)], T – temperature.

Consequently: $\frac{\partial T}{\partial t} = a\Delta T + f(\mathbf{r}, t)$, where a – thermal diffusivity.

Can heat conduction in a porous solid be reduced to a 1D problem?

< □ > < @ > < 注 > < 注 > ... 注

Experimental

LFA: Netzsch LFA 457

${\bf CT}:$ Nikon XTEK XTH 225

Artem Lunev

Samples: metal foams

- Al-Mg-Si
- Diameter: 12.5 mm
- Porosity 60%
- Small, medium and large pores
- Thickness: 2.0 10.0 mm

When simple models fail

3 / 25

イロト イヨト イヨト イヨト

Conventional Paradigm

When simple models fail 4 / 25 э

Conventional Paradigm

Problems:

- Classical LFA requires homogeneous samples
- Porous samples combine two phases (pores and matrix)
- Samples are heterogeneous!
- Assume microgeometry changes $a\equiv\lambda/(\,C_p\rho)$ while same equations are valid
- An effective medium is analysed

Use Beer-Lambert law to introduce:

- a distributed heat source $\Psi(y) \propto \gamma \exp\left(-\gamma y\right)$
- a distributed temperature detection $V \propto \int_0^1 \theta(y) \exp(-\gamma y) dy$

... this leads to the "Penetration model".

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

LFA Heating Curves l = 10 mm, open pores

- Curves processed with the PULsE software
- Optimised parameters: a, Bi, $T_{\rm inf},\,\gamma$
- BFGS/Wolfe optimiser robust to outliers (least absolute deviations)

・ロト ・回ト ・ヨト ・ヨト

Thermal diffusivity in l = 10 mm metal foams Open surface pores, Penetration model

Medium Pores

Large Pores

Thermal diffusivity: size dependence Open surface pores, Penetration model

When simple models fail 8 /

8 / 25

Thermal diffusivity in l = 5 mm metal foams Closed surface pores, Standard model

Change of Paradigm

Artem Lunev

When simple models fail

10 / 25

Constructing meshes

The University of Manchester

Exposure time	$708 \mathrm{\ ms}$	no pre-filtration	
Projections	3142	2 frames per projection	
Acquisition time	$2~\mathrm{h}$ 30 min	per sample	
Voxel size	$9.71~\mu{ m m}$	CT Pro	
Processing	ThermoFisher Avizo v2019.2		

イロト イヨト イヨト イヨト

Mesh parameters

All meshes consist of 4-nodal tetrahedral elements.

The VTK software was used to estimate:

- the aspect ratio, $\eta = 12(3\,V)^{2/3}/\sum_e l_e^2$
- the typical edge length $l_{\rm typ}=\sqrt{2\langle\eta^{-1}\rangle}[3\langle\,V\rangle]^{1/3}$

Pores (mm)	Nodes	Elements	El	ement characteristics		
$(\times 10^6)$	$(\times 10^{6})$	$(\times 10^{6})$	mean volume	volume s.d.	$l_{\rm typ}$	quality,
			$(\times 10^{-6} \text{ mm}^3)$	$(\times 10^{-6} \text{ mm}^3)$	(mm)	$\langle \eta^{-1} \rangle$
0.6 - 4.00	3.30	11.4	43.5	65.3	0.22	1.99
0.4 - 1.00	10.9	35.3	14.3	22.6	0.071	2.06
0.2 - 0.35	27.7	88.2	5.58	8.20	0.050	1.89

Given the above:

- the mesh quality is reasonable: $\eta^{-1} \approx 2$
- $l_{\rm typ}$ is smaller than the average pore diameter

Therefore, the segmentation is adequate.

Pore analysis Avizo and Reactive'IP IPSDK

Tortuosity calculation

Tortuosity is defined as: $\tau = L/l$, where L is the curved path and l is the Euclidean distance between two points (bee-line).

Two methods were used to calculate tortuosity:

- Centroid path (Avizo) traces a path using centroids of planar slices
- Geodesic vs Euclidean distance maps each voxel contributes equally to the statistics

Method			Pore size
Method	Large	Medium	Small
Centroid (metal)	1.459	1.385	1.508
Distance maps	1.095 ± 0.117	1.077 ± 0.069	1.076 ± 0.060

4) Q (

Light penetration

Light assumed to illuminate visible surfaces only. Algorithm:

- identify boundary between matrix and pores
- select cells with $\mathbf{n} \cdot \mathbf{n}_l > 0$, where \mathbf{n}_l is the direction of the laser beam
- cast ray from cell centre toward the source direction $-\mathbf{n}_l$
- test intersection with other surfaces (Möller–Trumbore algorithm)
- assume side is illuminated by the laser if test passes

Same procedure identifies surfaces visible by the detector. Finally, the attenuation coefficient γ was extracted from the absorption profiles below.

Three-dimensional heat conduction

Let $\theta = (T - T_0)/\delta T_m$, where δT_m is the maximum adiabatic heating. Additionally, Fo $= a_m t/l^2$. Solve the heat equation with the boundary conditions

$$\phi(\mathbf{r})\frac{\partial\theta}{\partial \mathrm{Fo}} = l^2 \nabla(\phi(\mathbf{r})\nabla\theta),$$

illuminated surfaces: $l(\mathbf{n} \cdot \nabla\theta) = \frac{1}{\mathrm{Fo}}(\mathbf{n} \cdot \mathbf{n}_l)f(\mathrm{Fo}),$
other surfaces: $(\mathbf{n} \cdot \nabla\theta) = 0,$

where $\phi = 1$ inside the matrix and nil elsewhere; **n** is the inward normal vector; f(Fo) is the pulse shape function.

Boundary conditions are formulated at the matrix-pore interface and at the external surfaces.

Detector signal:

$$J(\mathrm{Fo}) = \int_{\mathrm{visible}} (\mathbf{n} \cdot \mathbf{n}_d) \theta(\mathrm{Fo}) dA$$

Artem Lunev

When simple models fail 16 / 25

Finite element modelling

The system of equations reduces to a sparse linear system Hy = f with a symmetric positive-definite matrix H.

- $\bullet~{\bf H}$ depends on sample geometry and time step.
- **H** is used to calculated the solution at every time step. The linear system is solved with the Intel MKL PARDISO package using multicore shared memory system.
- $\bullet\,$ The matrix H is factorised only at the first time step
- Subsequent factorisations are performed only after a change of time step
- A simulation of the LFA experiments consists of 84 time steps and only 5 changes in time steps, hence 5 factorisations.
- The performance of solution is limited by the amount of available RAM and CPUs.
- For example, the mesh corresponding to the sample with small pores requires about 160 GB of RAM (other meshes have smaller requirements).
- Calculations done on Google VM instances.

Heat diffusion

in samples with light penetration

(a) Large pores

(b) Medium pores

(c) Small pores

- Logarithmic θ scale $(5 \times 10^{-3} 20)$
- Visualised in ParaView
- Open this pdf in Acrobat Reader or Okular to watch the animation

イロト イヨト イヨト イヨト

æ

LFA vs FEA comparison

Open pores

LFA vs FEA comparison

Open pores

- Blue γ extracted from time-temperature profile optimisation
- Red true absorption profiles
- In both cases, the Beer-Lambert law is used
- "Model mimicry"!

.⊒ . >

• = • •

Thermal diffusivity in l = 5 mm metal foams Closed surface pores, Standard model – tortuosity correction

Better results – but deviation still significant. Why?

Artem Lunev

When simple models fail 21

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

21 / 25

.⊒ . >

FEA vs LFA

Opaque 5 mm thick samples with medium pores

- Opaque faces and tortuosity correction
- Model treating foams as solid cylinders produces time lag
- Introducing "fake" absorption profile "solves" the problem
- Sample heterogeneity defies classical models

(日) (四) (日) (日) (日)

- If direct CT-informed FEA calculations are possible, they should be given priority over misinformed LFA experiments
- Existing coarse-grained models fail to describe temperature transients in metal foams
- **③** This leads to size dependence in LFA measurements
- The Fourier law is not strictly applicable to porous media
- Effective-medium models still needed to validate complex installations combining multiple levels of detail

To be continued...

イロト イヨト イヨト イヨト

Acknowledgements

Alex Lauerer

Vadim Zborovskii

Fabien Léonard

Artem Lunev

Further reading:

- Digital twin of a laser flash experiment helps to assess the thermal performance of metal foams
- Experimental evidence of gas-mediated heat transfer in porous solids measured by the flash method

Artem Lunev acknowledges the support of Russian Science Foundation grant no. 22-72-10027

Other misconceptions in laser/light flash analysis

There are examples of other materials and experimental conditions making classical analysis non-straightforward.

Some interesting cases are summarised in the articles below:

- Lunev, A. (2022). Applied Physics Letters, 121(9), 096101.
- Lunev, A. (2022). Advanced Functional Materials, 2205076.
- Lunev, A., Zborovskii, V., & Vilkhivskaya, O. (2022). Revisiting transient heat transfer in coated transparent media.

イロト イヨト イヨト イヨト