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Background

Fourier’s law
Heat flux: q = −λ∇T ,
where λ – thermal conductivity [W/(m·K)], T – temperature.

Consequently: ∂T
∂t = a∆T + f (r, t), where a – thermal diffusivity.

LASER

Can heat conduction in a porous solid be reduced to a 1D problem?
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Experimental

LFA: Netzsch LFA 457

CT: Nikon XTEK XTH 225

Samples: metal foams

Al-Mg-Si
Diameter: 12.5 mm
Porosity 60%
Small, medium and large pores
Thickness: 2.0 – 10.0 mm
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Conventional Paradigm

LFA
Experiment

Material
Light

absorption
Heat

transfer

Simplified Model

Either

dlas

ddet

or
l/γ

l/γ θFo = θyy +Φ(Fo)Ψ(y),
θy|y=0 = Bi · θ|y=0,

−θy|y=1 = Bi · θ|y=1,

θ(y, 0) = 0.
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Conventional Paradigm

Problems:
Classical LFA requires homogeneous samples
Porous samples combine two phases (pores and matrix)
Samples are heterogeneous!
Assume microgeometry changes a ≡ λ/(Cpρ) while same equations are
valid
An effective medium is analysed

Use Beer-Lambert law to introduce:
a distributed heat source Ψ(y) ∝ γ exp (−γy)
a distributed temperature detection V ∝

∫ 1

0
θ(y) exp(−γy)dy

... this leads to the “Penetration model”.
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LFA Heating Curves
l = 10 mm, open pores
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Curves processed with the PULsE software
Optimised parameters: a, Bi, Tinf, γ
BFGS/Wolfe optimiser robust to outliers (least absolute deviations)

Artem Lunev When simple models fail 6 / 25



Thermal diffusivity in l = 10 mm metal foams
Open surface pores, Penetration model
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Thermal diffusivity: size dependence
Open surface pores, Penetration model
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Thermal diffusivity in l = 5 mm metal foams
Closed surface pores, Standard model
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Change of Paradigm

LFA
Experiment

Material
Light

absorption
Heat

transfer

Digital Twin

Mesh Ray casting Finite
Elements

Real

Virtual Simplified Model
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Constructing meshes

Exposure time 708 ms no pre-filtration
Projections 3142 2 frames per projection
Acquisition time 2 h 30 min per sample
Voxel size 9.71 µm CT Pro
Processing ThermoFisher Avizo v2019.2
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Mesh parameters

All meshes consist of 4-nodal tetrahedral elements.

The VTK software was used to estimate:
the aspect ratio, η = 12(3V )2/3/

∑
e l2e

the typical edge length ltyp =
√

2〈η−1〉[3〈V 〉]1/3

Pores (mm) Nodes
(×106)

Elements
(×106)

Element characteristics
mean volume
(×10−6 mm3)

volume s.d.
(×10−6 mm3)

ltyp
(mm)

quality,
〈η−1〉

0.6 - 4.00 3.30 11.4 43.5 65.3 0.22 1.99
0.4 - 1.00 10.9 35.3 14.3 22.6 0.071 2.06
0.2 - 0.35 27.7 88.2 5.58 8.20 0.050 1.89

Given the above:
the mesh quality is reasonable: η−1 ≈ 2

ltyp is smaller than the average pore diameter
Therefore, the segmentation is adequate.
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Pore analysis
Avizo and Reactive’IP IPSDK

(a) Skeletonization (small) (b) Skeletonization (large) (c) Sphere fitting
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Tortuosity calculation

Tortuosity is defined as: τ = L/l, where L is the curved path and l is the
Euclidean distance between two points (bee-line).

Path = l Path = L

Two methods were used to calculate tortuosity:
Centroid path (Avizo) – traces a path using centroids of planar slices
Geodesic vs Euclidean distance maps – each voxel contributes equally to
the statistics

Method Pore size
Large Medium Small

Centroid (metal) 1.459 1.385 1.508
Distance maps 1.095± 0.117 1.077± 0.069 1.076± 0.060
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Light penetration
Light assumed to illuminate visible surfaces only. Algorithm:

identify boundary between matrix and pores
select cells with n · nl > 0, where nl is the direction of the laser beam
cast ray from cell centre toward the source direction −nl
test intersection with other surfaces (Möller–Trumbore algorithm)
assume side is illuminated by the laser if test passes

Same procedure identifies surfaces visible by the detector. Finally, the
attenuation coefficient γ was extracted from the absorption profiles below.
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Three-dimensional heat conduction

Let θ = (T − T0)/δTm, where δTm is the maximum adiabatic heating.
Additionally, Fo = amt/l2.
Solve the heat equation with the boundary conditions

φ(r) ∂θ

∂Fo
= l2∇(φ(r)∇θ),

illuminated surfaces : l(n · ∇θ) =
1

Fo
(n · nl)f (Fo),

other surfaces : (n · ∇θ) = 0,

where φ = 1 inside the matrix and nil elsewhere; n is the inward normal
vector; f (Fo) is the pulse shape function.
Boundary conditions are formulated at the matrix-pore interface and at the
external surfaces.
Detector signal:

J (Fo) =
∫

visible
(n · nd)θ(Fo)dA
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Finite element modelling

The system of equations reduces to a sparse linear system Hy = f with a
symmetric positive-definite matrix H.

H depends on sample geometry and time step.
H is used to calculated the solution at every time step. The linear system
is solved with the Intel MKL PARDISO package using multicore shared
memory system.
The matrix H is factorised only at the first time step
Subsequent factorisations are performed only after a change of time step
A simulation of the LFA experiments consists of 84 time steps and only 5
changes in time steps, hence 5 factorisations.
The performance of solution is limited by the amount of available RAM
and CPUs.
For example, the mesh corresponding to the sample with small pores
requires about 160 GB of RAM (other meshes have smaller requirements).
Calculations done on Google VM instances.
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Heat diffusion
in samples with light penetration

(a) Large pores (b) Medium pores (c) Small pores

Logarithmic θ scale (5× 10−3 – 20)
Visualised in ParaView
Open this pdf in Acrobat Reader or Okular to watch the animation
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LFA vs FEA comparison
Open pores
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LFA vs FEA comparison
Open pores
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Blue – γ extracted from time-temperature profile optimisation
Red – true absorption profiles
In both cases, the Beer-Lambert law is used
“Model mimicry”!
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Thermal diffusivity in l = 5 mm metal foams
Closed surface pores, Standard model – tortuosity correction
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Better results – but deviation still significant. Why?
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FEA vs LFA
Opaque 5 mm thick samples with medium pores
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Opaque faces and tortuosity correction
Model treating foams as solid cylinders produces time lag
Introducing “fake” absorption profile “solves” the problem
Sample heterogeneity defies classical models
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Conclusions

1 If direct CT-informed FEA calculations are possible, they should be given
priority over misinformed LFA experiments

2 Existing coarse-grained models fail to describe temperature transients in
metal foams

3 This leads to size dependence in LFA measurements
4 The Fourier law is not strictly applicable to porous media
5 Effecitve-medium models still needed to validate complex installations

combining multiple levels of detail
To be continued...
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Other misconceptions in laser/light flash analysis

There are examples of other materials and experimental conditions making
classical analysis non-straightforward.

Some interesting cases are summarised in the articles below:

Lunev, A. (2022). Applied Physics Letters, 121(9), 096101.
Lunev, A. (2022). Advanced Functional Materials, 2205076.
Lunev, A., Zborovskii, V., & Vilkhivskaya, O. (2022). Revisiting transient
heat transfer in coated transparent media.
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https://doi.org/10.1063/5.0096847
https://doi.org/10.1002/adfm.202205076
https://hal.archives-ouvertes.fr/hal-03771300/
https://hal.archives-ouvertes.fr/hal-03771300/
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